Parlant de tempestes solars a À Punt Mèdia

Ahir va ser un dia especial per dos motius. Primerament vaig poder gaudir des de dins de la nova ràdio valenciana, la ràdio d’À Punt Mèdia i la segona vaig parlar de ciència amb Jèssica Crespo, la conductora del programa matinal Al Ras.

Davant la inquietud que desperten els fenòmens violents de l’espai que afecten a la Terra, m’he centrat en les tempestes solars i els seus efectes sobre el nostre planeta.

De vegades, sobretot en períodes de gran activitat solar, el camp magnètic de les zones actives solars es reestructura i, en el procés, s’expulsen milions de tones de plasma a l’espai. És el que anomenem una tempesta solar.

Si tenim la mala sort que aquest fenomen passe just en el centre del disc solar, la tempesta arribarà de segur a la Terra i produirà diversos efectes depenent de la seua intensitat.

Les tempestes solars es caracteritzen per tres tipus de processos energètics ben diferents:

El primer seria l’emissió de radiació electromagnètica (raig X, gamma i ultravioleta) que en arribar al nostre planeta és capaç d’afectar les capes altes de l’atmosfera terrestre, d’ionitzar-la, augmentant la densitat electrònica i escalfar-la i expandir-la de manera que els satèl·lits en orbita baixa poden canviar l’òrbita en augmentar el fregament i el segon seria l’emissió de protons molt energètics (Esdeveniments d’emissió de protons) que pot afectar els astronautes o tallar les comunicacions per satèl·lit.

Tanmateix és l’emissió de massa coronal el fenomen més energètic relacionat amb les tempestes solars. Milions de tones de plasma (gas altament ionitzat) són expulsats a l’espai embolcallats en una mena de bambolla magnètica que en xocar contra el camp magnètic terrestre són deflectides cap a les zones polars. El xoc d’aquestes partícules energètiques amb les molècules d’oxigen i nitrogen atmosfèrics origina les cascades de llums de color que coneixem com a aurores boreals. Una tempesta geomagnètic ha començat.

De vegades però, les conseqüències d’aquest encontre còsmic no són tan innòcues. Si la tempesta  solar és molt intensa els corrents de partícules que recorren la magnetosfera terrestre creen uns corrents induïts en el subsol terrestre, que fàcilment pot arribar a les línies d’alta tensió a través de les preses de terra. Aquestes corrents poden arribar als transformadors i cremar-los. Ciutats senceres s’han quedat a les fosques després d’una tempesta geomagnètica intensa com ara Quebec, en març del 1989 o part de Malmö el 2003. Els efectes són, per tant, devastadors, tant per a les infraestructures com per a les persones.

De tot això he parlat a Al Ras. Si voleu escoltar-me, ací us deixe l’enllaç (A partir del minut 25)

Parlant de tempestes solars a Al Ras

Més informació:
Solar Storm Threat Analysis, James A. Marusek.

La ciència del 2018

L’any 2018 ha començat a caminar i les grans revistes científiques Science i Nature han fet les seues previsions del que ens oferirà la ciència durant aquest any.

La política científica no pot separar-se dels esdeveniments polítics que sacsegen el món. Així mentre el Regne Unit ha posat la directa per abandonar la Unió Europa i enguany començaran les negociacions per a la fase 2 del Brexit on s’hauran de determinar, entre altres, com s’articularan les futures col·laboracions dels científics britànics amb la resta dels científics europeus, els Estats Units s’enfronten a les eleccions de mitja legislatura. En aquestes s’elegiran la meitat de membres del Senat i de la Càmera de Representants. Si el republicans perden la majoria a les cambres a mans dels demòcrates, potser alguna de les decisions polèmiques de l’administració Trump en matèria medi-ambiental podrien revertir-se o congelar-se.
Per altra banda noves potències científiques com la Índia o la Xina continuen la lluita contra el canvi climàtic, promouen la cursa espacial i fan avanços ràpids en la recerca biomèdica.

Canvi climàtic

Aquest any els estats que van signar el Protocol de Paris l’any 2105 presenten el seu primer informe de com han començat a implementar les recomanacions de l’Acord per a que la temperatura mitjana del planeta no puge més de l’1,5-2,0 ºC per damunt dels valors de l’era preindustrial. Ho hauran de fer a la reunió de les Nacions Unides (2018 Facilitative dialogue) i serà interessant veure el que presenta l’Estat Espanyol que acaba de guanyar la batalla europea per l’Impost al Sol amb l’aval del Consell Europeu, que, recordem-ho, és només el club dels 28 estats de l’Unió. Ara caldrà convèncer el Parlament Europeu (més difícil) i la Comissió en la que el comissari d’energia és el polèmic polític espanyol Arias Cañete per que tinga l’aval complet d’Europa.

Al mes de setembre a l’estat de Califòrnia tindrà lloc una important reunió sobre canvi climàtic en suport a l’Acord de Paris, promogut pel governador de l’estat, el demòcrata Edmund Gerald “Jerry” Brown, Jr. Les idees negacionistes no són transversals als Estats Units i diversos estats i ciutats no comparteixen les idees absurdes del seu president.

Observació del cel

L’observació del cel eixamplarà els seus horitzons més que mai amb la nova finestra oberta pel descobriment de les ones gravitatòries. Aquest 2018 l’observació d’esdeveniments de xocs entre forats negres o estels de neutrons llunyans seran cada vegada més freqüents i, com no podia ser d’altra manera, cada vegada menys mediàtics.

Els esclats ràpids de ràdio són un fenomen astrofísic d’alta energia d’origen desconegut que es manifesta com un pols transitori d’emissió en ràdio i que dura només uns pocs mil·lisegons. Per la seua curta durada només se n’han pogut registrar fins ara unes poques dotzenes. Tanmateix la posada en marxa enguany del Canadian Hydrogen Intensity Mapping Experiment (CHIME), un revolucionari radiotelescopi permetrà observar-ne molts més i, potser, determinar quin tipus d’objecte els produeix.

Serà també en abril quan l’equip del telescopi Gaia presente el segon paquet de dades que ens donarà la posició o moviment de més de mil milions d’estrelles de la nostra Galàxia. Aquestes dades permetran fer estudis de l’estructura espiral de la Via Làctia, del moviment d’estrelles llunyanes i, potser, ajude a conéixer les germanes del Sol.

Segurament serà al llarg d’any any quan es donen a conéixer finalment les dades finals del gran experiment del Telescope Event Horizon, un projecte internacional d’observació conjunta de multitud de radiotelescopis arreu del món per observar el forat negre central de la nostra galàxia. Amb les dades conjuntes s’espera tindre la primera imatge real d’un forat negre.

Exploració espacial

Les agencies espacials treballaran de valent el 2018. Per ordre del president Donald Trump la Nasa ha de tornar a enviar astronautes a la Lluna, potser en una etapa prèvia per arribar a Mart, més enllà de 2030. Tanmateix son les agències asiàtiques les que si que hi arribaran enguany.

En els primers mesos del 2018 la nau Chandrayaan-2 tractarà, per primera vegada per a l’Índia, d’aterrar a la superfície lunar, mentre que el desembre Xina tractarà que dipositar el Chang’e-4 en la cara oculta de la Lluna.

En la resta del sistema solar també hi haurà moviment. En juliol, la sonda Hayabusa-2 de l’agència japonesa de l’espai (Jaxa) arribarà a l’asteroide Ryugu mentre que Osiris-Rex de la NASA explorarà l’asteroide Bennu a final d’any. Un dels objectius més importants d’aquestes missions serà el retorn de mostres d’aquests objectes celestes que arribaran a la Terra el 2020.

A l’estiu s’enviarà cap al Sol la sonda Parker Solar Probe (Solar Probe Plus), una sonda espacial de la NASA destinada a estudiat la corona exterior de la nostra estrella in-situ. S’hi acostarà a 8,5 radis solars (5,9 milions de quilòmetres) de la ‘superfície’ (fotosfera) del sol. Però aquesta serà només una petita sonda en nombre d’instruments en comparació a la sonda europea Solar Orbiter, en el disseny de la qual participa un grup d’investigadors de la Universitat de València. Aquest sonda es llançarà durant els primers mesos del 2019.

Redefinició unitats físiques

Les unitats de quatre unitats físiques seran redefinides a final d’any en la Conferència General de Pesos i Mesures a celebrar en Versailles en novembre.  Els delegats de 58 estats votaran per adoptar noves definicions de l’ampère, el kilogram, el kelvin i el mol. Ara s’hauran de basar en valors exactes de constants fonamentals i no en definicions arbitràries, com fins ara.

Google Lunar XPrize

L’empresa Google va dotar fa anys el premi Google Lunar XPrize amb uns 25 milions d’euros per a l’equip privat que, abans del 31 de desembre del 2017, primer aconseguirà fer aterrar a la Lluna una sonda amb un rover que es mogués almenys 500 m a la superfície i retransmetera a la Terra imatges d’alta definició. Com és obvi cap grup ho ha aconseguit, encara que cinc equips han pogut passar l’homologació per sortir a l’espai. Google ha decidit perllongar el termini fins el 31 de març pròxim. Veurem qui guanya aquesta peculiar cursa espacial.

Finalment seria bonic recordar durant 2018 els aniversaris redons dels científics i científiques més famosos. Enguany, per exemple, fa 150 anys del naixement d’Henrietta Swan Leavitt, 200 del de James Joule i 100 anys del teorema de Noether.

Bon any científic….

Figures.

1.- El CHIME (Canadian Hydrogen Intensity Mapping Experiment) és un nou radiotelescopi canadenc dissenyat per contestar les preguntes més importants de l’astrofísica i cosmologia.
2.- Mitjanes anuals (línies primes) i mitjanes de cinc anys (línies gruixudes) per a les anomalies de temperatura promediades sobre la superfície terrestre de la Terra i sobre la superfície del mar (línia blava) en la part de l’oceà lliure de gel. Wikipedia Commons.
3.- Hayabusa-2 de l’agència japonesa de l’espai (Jaxa). Courtesia d’Akihiro Ikeshita.
4.- Una esfera gairebé perfecta del silici ultra-pur,  part del projecte Avogadro, un projecte de Coordinació Internacional Avogadro per determinar el número d’Avogadro. Wikipedia Commons.

El cel de gener de 2018

Comença un any nou ple de bon desitjos que esperem que es complesquen.

El cel de l’hivern es deixa veure entre núvols passant i un estiuet fora de temporada. Un oratge que si bé és molt adequat per a l’observació del cel nocturn ens recorda que ja vivim el canvi climàtic.

El firmament d’aquest mes està presidit per la bella constel·lació d’Orió, emmarcada entre les constel·lacions amigues de Taure, Can Major i Menor i els Bessons. L’estel més brillant del cel, Sírius, ha presidit des del sud totes les festes del canvi d’any, la veurem baixa a l’horitzó però ben present.

Acabades les festes del cap d’any, les festes del cel, però, continuen. Avui mateix, dia 1 de gener, a les 22:54, la Lluna assolirà el punt de major aproximació a la Terra, l’apogeu, situant-se a només a 356565 km del centre del nostre planeta. I com que la Lluna farà el ple a les 3:24 h de la matinada del dia 2, només unes 4 hores i mitja després, aquesta mateixa nit tindrem la primera Superlluna de l’any. Sempre és bonic mirar la Lluna i més si la veiem una mica més gran.

A més a més al gener del 2018 tindrem dues llunes plenes. Això no té res d’extraordinari ja que, com que el mes lunar dura uns ~29.53 dies, si tenim una lluna plena el primer dia de mes, la segona lluna plena podrà caure als últims dies del mes, i més si és de 31 dies, com ho és gener.

Aquest mes encara no podrem gaudir de la presència dels planetes en la primera part de la nit. Cap planeta brillant serà visible en les primeres hores després de la posta del Sol. Per veure els planetes caldrà matinar ja que Júpiter, Mart, Saturn i Mercuri seran visibles mirant cap a l’est o sud-est, poques hores abans de l’eixida del Sol.

Les primeres hores del 7 de gener Júpiter i Mart es trobaran en conjunció, arribant en les següents hores, ja de dia,  a aproximar-se fins a 0,2° un de l’altre, una grandària aparent menor que la Lluna plena.

Uns dies més tard, el 13 de gener, seran els planetes Saturn i Mercuri els que es trobaran ben junts, ben prop de l’horitzó. Una Lluna ben prima es situarà una mica més amunt al mig d’un línia imaginaria que uneix aquesta parella amb els planetes Júpiter i Mart que podem trobar a la constel·lació de la Balança.

Durant els últims dies del mes l’alineació dels planetes Júpiter, Mart i Saturn seran l’espectacle de les matinades mentre l’estel Antares, l’ull rogenc de l’Escorpí, farà encara més bonica la geometria celeste.

I, per acabar una nova curiosa. Com cada principi de gener, el dia 3, la Terra es trobarà en el periheli, el punt de màxima aproximació al Sol. En aquest moment serem a només 147 492 000 km de la nostra estrella. És a dir, que en ple hivern ens trobem més prop del Sol que en estiu!. El que realment causa les estacions és la inclinació de la Terra, no la variació de la distància Terra-Sol.

La Lluna presentarà les següents fases en hora local:

Fase Mes Dia Hora
Lluna plena Gener 2 03 24
Quart minvant Gener 8 23 25
Lluna nova Gener 17 03 17
Quart creixent Gener 24 23 20
Lluna plena Gener 31 14 27

Si voleu obtenir més informació podeu punxar aquest enllaç. També podeu veure un senzill mapa del firmament del mes de gener de 2018. I tot això gràcies al Planetari de Quebec.

Imatges:

1.- La Terra i la Lluna es veu a través dels anells de Saturn el 12 d’abril de 2017. Abans que Cassini fos destruïda, va mirar entre els anells de Saturn i va trobar dos objectes familiars: la Terra i la seua lluna. NASA / JPL-Caltech / Space Science Institute.

2-4. Captures de pantalla d’Stellarium.

Bon any 2018

En poques hores comença l’any 2018. Us desitje un millor any per a tothom.

Us regale una eixida de la Terra vista des de la Lluna, obtinguda per les càmeres del Lunar Reconnaissance Orbiter (LRO). Aquesta impactant foto està composada per una sèrie d’imatges obtingudes el 12 d’octubre de 2015 quan aquest satèl·lit artificial de la Lluna es trobava a només 134 km d’alçada de la superfície lunar sobre el cràter Compton en la cara oculta de la Lluna.

Observeu que bella és la Terra, la nau que ens protegeix en el nostre viatge vital per la Galàxia. Sembla fràgil però no ho és. El que és fràgil és l’espècie que ha colonitzat tot el planeta que usa la violència per arreglar conflictes, que ompli l’atmosfera de gasos d’efecte hivernacle, que acaba amb molts dels habitats naturals.

La Terra passarà la prova. La humanitat no ho sabem. El que si que sabem és que el nostre planeta ha viscut milers d’anys sense la nostra presència i pot tornar-ho a fer sense problema.

Esperem que durant el 2018 minve la nostre petjada ecològica i el diàleg entre persones prevalga sobre la imposició i la violència al món.

Bon any 2018

Més informació a:
NASA Releases New High-Resolution Earthrise Image

Retorna l’hivern

L’estació més freda de l’any retorna avui, 21 de desembre. A les 17:28 h el Sol assolirà el punt més baix respecte a l’equador celeste. Serà el moment del solstici d’hivern i l’entrada de l’hivern. Aquesta tardor tan estranya s’haurà acabat definitivament.

Ja haureu observat com els raigs de llum del Sol s’endinsen cada vegada més dintre de casa, escalfant en allò possible la vostra llar. I és que el Sol, vist des de la Terra, fa actualment un camí ben curt al cel (amb la durada diürna ben curta) i amb molt poca alçada respecte a l’horitzó sud.

Esfera celeste. Equinox és la línia de l’equador celeste i el camí que recorre avui el Sol, dia de l’equinocci.

Això, per suposat, no s’ha produït de sobte, sinó molt a poc a poc. Des del solstici d’estiu, el 21 de juny passat, de manera aparent al cel, la nostra estrella ha anat disminuint la seua declinació, o angle de separació al pla de l’equador, i ara ha arribat al seu mínim, a -23,5º, valor (sense el -) que coincideix amb la inclinació de l’eix de la Terra. Físicament, el solstici d’hivern correspon al moment en què l’eix de rotació de la Terra es troba més allunyat a la direcció Terra-Sol, direcció dels raigs de llum solar. En conseqüència, tenim estacions perquè la Terra està inclinada.

Però realment aquesta minva continua de l’alçada del Sol s’atura uns dies com si li costés tornar a créixer buscant l’equador. El Sol està aturat al cel, ni puja més ni davalla, per això es diu que està en el solstici (sol+ sistere, Sol aturat), amb el Sol aturat al cel. Durant uns pocs dies al voltant del 21, l’altura del Sol a migdia serà la mateixa i, per tant, les hores de llum seran aproximadament igual de llargues, a València unes 9 h i 22 min.

Des d'un punt de l'hemisferi nord, el Sol es veu molt baix aquests dies.

Des d’un punt de l’hemisferi nord, el Sol es veu molt baix aquests dies.

Passat, però, uns dies, el Sol semblarà renàixer. De mica en mica el Sol assolirà alçades majors al migdia i, per tant, les hores de llum augmentaran. Aquest renaixement del Sol, de l’astre rei, a partir del solstici d’hivern ha estat percebut per moltes civilitzacions antigues com un fet cabdal del calendari i de les seues mitologies. Per això molts edificis han estat orientats cap al punt de l’eixida del Sol el dia del solstici d’hivern. L’exemple més bonic i ben nostrat és l’espectacle del calidoscopi de la Seu de Palma. La catedral es va construir amb una inclinació respecte al Nord exactament 120º de manera que es troba orientada respecte a l’eixida del Sol del solstici d’hivern.

Amb aquesta orientació la llum solar en eixir per l’horitzó travessa simultàniament les dues rosasses de la Seu, entrant per la més occidental i sortint per la més oriental, la que es troba sobre la porta principal. I l’efecte és espectacular. Es produeix un calidoscopi de colors. Els vitralls de les rosasses mostren un ventall de colors tal com un calidoscopi còsmic anunciant-nos uns dies més benignes.

Com cada any la Societat Balear de Matemàtiques organitza l’activitat d’observació del fenomen des de la terrassa des d’es Baluard a Palma el 23 de desembre partir de les 7:00h.

Al País Valencià també hi ha alineacions solar associades al solstici d’hivern. Podeu acostar-vos a Penàguila (l’Alcoià) on la llum del Sol passa per un forat a la muntanya anomenat arc de Sant Llúcia en les primeres hores de la vesprada al voltant del solstici d’hivern.

Imatges:

1.-Nadal a València. Plaça de l’ajuntament de València. Enric Marco
2.- Diagrama d’Understanding Astronomy, The Sun and the Seasons. La línia anomenada December solstice és el cercle on es troba el Sol el 21 de desembre els dies del solstici d’hivern.
3.- Il·luminació de la Terra durant el solstici d’hivern. CC BY-SA 2.0, Enllaç
4.- Llums del Sol eixint a la rosassa oriental de la Seu de Palma. Maria Victòria Secall. 20 desembre 2014.
5.- Nadal a València. Plaça de l’ajuntament de València. Enric Marco

Més llum al carrer no garanteix més seguretat

Un estudi de la policia britànica mostra que els canvis en l’enllumenat públic, tant incrementant-lo com apagant-lo totalment a la nit, no tenen cap incidència significativa en l’increment o disminució dels delictes. Els que ens vénen el discurs de més llum als carrers per motius de seguretat s’ho hauran de fer mirar.

Tot al llarg de la Gran Bretanya la majoria de municipis han reduït l’enllumenat nocturn dels carrers per reduir despeses i emissions de diòxid de carboni. Així, per exemple, al comtat de Lincolnshire, un dels comtats d’Anglaterra, situat a la regió dels Midlands de l’Est, les autoritats han fet canvis importants en l’enllumenat nocturn dels carrers. Tanmateix, els canvis no van consistir en canviar només les làmpades de sodi d’alta pressió per LED blancs com s’està fent a moltes parts del món sinó que foren realment imaginatius.

Entre abril del 2016 i març del 2017 el Consell del Comtat de Lincolnshire va fer diversos canvis en les condicions de l’enllumenat vial. Depenent dels pobles i carrers, l’enllumenat a la nit estava completament apagat durant tota la nit, amb nova llum LED, o bé parcialment apagat entre les 00:00 h. fins a les 6:00 h. del matí.

Aquesta darrera opció va intranquil·litzar els residents dels pobles i carrers afectats ja que es va estendre la sensació que el nombre de delictes havia augmentat durant les 6 hores de foscor. Aquesta percepció negativa de la ciutadania portà la policia del comtat a fer un ampli estudi estadístic per avaluar científicament si hi ha realment una correlació entre l’apagada dels llums durant la nit i els nombre de delictes registrats per la policia de Lincolnshire

Per veure si la iniciativa de l’apagada parcial de llums realitzada entre 2016-2017 tenia alguna relació amb el nombre de delictes comesos es comparà amb un període similar de l’any anterior, 2015-2016. El tipus de delictes incloses en l’estudi van ser: assalt a domicilis, dany criminal, robatori del vehicle, violència contra les persones i robatori, i que hagueren ocorregut entre les 00:00 h. a les 06:00 hores, les hores d’apagada de l’enllumenat públic.

L’estudi de la policia ha conclòs que, encara que molts factors poden afectar el nombre de delictes comesos en una certa àrea, no és possible afirmar directament que un augment o disminució del nombre de delictes registrats és el resultat directe dels canvis en les condicions d’il·luminació del carrer durant la nit.

Tanmateix la percepció de l’increment de la por dels ciutadans afectats per l’apagada de llums és real i per això la policia recomana informar adequadament la població afectada per fer front a la causa dels seus temors i percepcions que envolten la manca d’enllumenat públic i treballar per reduir aquestes incerteses.

Més informació: Lincolnshire Police

Street Lighting & Crime Levels Report Released 

Street Lighting Executive Summary (pdf)
Street Lighting Report – 2017 (pdf)

Imatge:
1.- La Catedral de Lincoln de nit vista des de Broadgate, 2010, Wikipedia Commons.
2.- Posta de sol al moll de Skegness. Lincolnshire. 2005- Wikipedia Commons.

Segona jornada de contaminació lumínica a Riba-roja de Túria

La segona jornada sobre el problema de la contaminació lumínica celebrada fa uns dies a Riba-roja de Túria (el Camp de Túria) s’ha acabat i caldria fer-ne un resum. Com la primera jornada celebrada fa un anys aquesta també ha acomplert els seus objectius en reunir en la mateixa sala, tècnics d’il·luminació d’ajuntaments, regidors encarregats del tema, astrònoms, biòlegs i fins i tot membres de la indústria. Els ponents han donat eines per enfrontar-se a aquesta pol·lució que malbarata recursos i de la qual estem començant a conéixer-ne els efectes sobre el medi ambient i la salut.

Inaugurada per l’alcalde Robert Raga, i pel cap d’Iniciatives Ángel Morales en representació del vicerector de Participació i Projecció Territorial de la Universitat de València, Jorge Hermosilla, les dues sessions de matí i vesprada comptaren amb la presència d’unes 50 persones que destacaren per la participació en els torns de preguntes als ponents i també posteriorment en les dues taules rodones.

La jornada començà amb la conferència del president de Cel Fosc, Fernando Jáuregui, que repassà les diferents normatives legals a l’estat i a Europa per a combatre les  instal·lacions i projectes públics i privats que afecte el cel nocturn. Ens explicà qué hauria de tindre una normativa per a ser útil en el control de la contaminació lumínica i quins han de ser el paràmetres que caldria controlar:
A. Flux emés a l’hemisferi superior (FHSi)
B. Color de la llum emesa
C. Nivells de llum màxims
D. Horari de flux reduït
E. Enllumenat no general

Susana Malón, física i CEO de Lumínica Ambiental, ens va fer un recorregut sobre els problemes culturals, mediambientals i de salut de la contaminació lumínica. Ens introduí en la tecnologia dels LED PC-Ambre que no tenen pràcticament emissió en la banda del blau. Finalment ens explicà diferents projectes d’enllumenat d’èxit a diferents poblacions que han adaptat el seu enllumenat a PC Ambre i han salvat el cel nocturn.

El professor de luminotècnia de la Universitat Rovira i Virgili, Josep Maria Ollé, ens donà una lliçó tècnica de la raó per la qual no és convenient la instal·lació de llums blanques, especialment leds d’alta temperatura de color. Ens féu saber que existeixen ja solucions de leds amigables amb el medi ambient amb temperatura de color sempre per sota del 2700 K i que són les que s’haurien d’utilitzar.

Després de dinar, la jornada es reprengué amb les xarrades dedicades als efectes visuals de la contaminació lumínica i com es mesura la contaminació lumínica des de l’espai. Per a això comptàrem amb la presència de Salvador Bará, professor d’Òptica de la Universidade de Santiago, que explicà el perquè no hi veiem bé amb la contaminació lumínica. El nostre sistema visual processa la informació que ens arriba a l’ull però la percepció que tenim depén de molts factors, de que hi haja llum suficient, no excessiva,  de l’edat, però sobretot del contrast. S’ha demostrat que el mínim per a detectar un objecte està al voltant de  1%. Si el contrast és molt baix, perdem capacitat de detectar objectes mentre que si és massa alt tenim una sensació visual desagradable. Finalment ens parlà de quina és la tonalitat agradable de la llum. Durant tota la història humana la nostra espècie ha estat il·luminada de molta llum blanca/blavosa durant el dia mentre que a l’ocàs i a l’alba la llum solar és més aviat càlida i amb poca intensitat. Per això ens resulta desagradable les il·luminacions vials nocturnes massa blanques o càlides intenses.

La darrera conferència va anar a càrrec de Alejandro Sánchez de Miguel, investigador de la University of Exeter. Ens explicà les tècniques d’estudi de la contaminació lumínica des de l’espai. Mitjançant les fotografies nocturnes fetes pels astronautes a bord de l’Estació Espacial Internacional s’ha aconseguit tenir un molt bon material científic per analitzar la contaminació lumínica en tot el món. Sánchez de Miguel se centra al final en l’estudi de  les imatges de la ciutat de València i de ciutats com Milà i Madrid que han fet o estan fent la transició a la tecnologia LED.

Les recomanacions de l’investigador són les següents:

A.- No utilitzeu cap tipus de llum amb temperatura de color per damunt de 3000 K.

B.- Si s’utilitza llums de 3000 K, és necessari reduir un mínim un 30% el nivell d’il·luminació i millor si és un 50%.

C.- Useu PC-Ambre o llum de menys de 2200 K ja que probablement contamine menys o igual que els llums de sodi d’alta pressió (HPS).

La jornada es completà amb dues taules redones, una al matí i l’altra a la vesprada, on es va fer un diàleg sobre el problema entre els ponents i els assistents.

Els dies després de la Jornada se celebra la IV Reunió científica de la REECL, Red Española de Estudios sobre Contaminación Lumínica. En una de les sessions ens reunirem amb diversos professionals d’empreses i fabricants de làmpades.

Agraïm als ponents l’aportació que han fet a la Jornada i a l’ajuntament de Riba-roja de Túria i el Vicerectorat de Participació i Projecció Territorial de la Universitat de València tota l’ajuda rebuda.

Imatges:

1.- Presentació de la jornada per l’alcalde Robert Raga, i per Ángel Morales, en representació del vicerector de Participació i Projecció Territorial de la Universitat de València, Jorge Hermosilla.
2.- Fernando Jáuregui
3.- Susana Malón
4.- Josep Maria Ollé
5.- Taula redona del matí
6.- Salvador Bará
7.- Alejandro Sánchez de Miguel

El cel de desembre de 2017

Finalment ha arribat el fred en aquest final de tardor tan estrany en la que hem passat de les calorades de l’estiu directament a les fredors hivernals. Les constel·lacions de l´hivern, com l’Orió, Taure amb les Plèiades al seu costat, ja es es troben altes en fer-se fosc. Aquest fred que ens ha arribat avui i que es quedarà fins la setmana que ve no serà amic de les observacions nocturnes que hauran d’esperar temps millors.

El mes comença amb una superlluna. Aquest fenomen, darrerament tan mediàtic, és només la coincidència de dos fets ben normals: la Lluna en fase de plena mentre aquesta es troba en la seua òrbita en el moment de màxima aproximació a la Terra, punt anomenat perigeu. Així el dia 3 de desembre, el moment de màxima plenitud de la Lluna serà a les 16:47, mentre que poques hores després (4 de desembre a les 09:42) la Lluna passarà pel perigeu a només 357492 km del centre de la Terra. L’eixida de la Lluna plena els vespres del 3 i del 4 de desembre poden ser espectaculars.

Aquest mes de desembre els planetes no es deixaran veure bé a la posta de Sol. Caldrà buscar-los a l’horitzó est, poc abans de l’albada quan Mart, Júpiter i l’esquiu Mercuri jugaran amb la Lluna minvant.

Així la matinada del dia 14, cap a les 7 del matí, una lluna minvant se situarà entre Mart, que trobarem en la Verge i Júpiter que es trobarà en Balança. Un bell triangle celeste que ben bé mereixeria una foto matinera.

Serà, però a final d’any quan podrem tindre un bell encontre celeste. La nit del 30 al 31 de desembre, a les 02:50, la Lluna se situarà ben prop de l’ull del Taure, l’estel gegant roig Aldebaran. La distància angular aparent entre ells serà 0,4°, quasi un diàmetre de disc lunar.

Una observació atenta de l’encontre permetrà veure dos objectes ben junts encara que realment cadascun d’ells situats a distàncies ben diferents. Mentre la Lluna es trobarà a 356565 km del centre de la Terra, Aldebaran serà a 66,64 anys-llum de nosaltres. Ben prop angularment però molt lluny un de l’altre.

Finalment, poc abans de la primera sortida del Sol de l’any 2018, com per donar la benvinguda a l’any nou, els planetes Mart i Júpiter, ben prop un de l’altre i Mercuri, prop de l’horitzó, es podran veure alineats, mirant cap a l’est.

Desembre és el mes de la darrera pluja d’estels important de l’any. La nit-matinada del 13 al 14 de desembre (pic esperat a les 3 de la matinada) podrem gaudir de la pluja d’estels dels Geminids que, en la millor condicions del cel poden donar uns 120 meteors/hora.

Finalment recordar que el 21 de desembre a les 17:28 h  el Sol assolirà el punt més baix respecte a l’equador celeste. Serà el moment del solstici d’hivern i l’entrada de l’hivern. Aquesta tardor tan estranya s’haurà acabat definitivament.

La Lluna presentarà les següents fases en hora local:

Fase Mes Dia Hora
Lluna plena Desembre 3 16 47
Quart minvant Desembre 10 08 51
Lluna nova Desembre 18 07 30
Quart creixent Desembre 26 10 20

Si voleu obtenir més informació podeu punxar aquest enllaç. També podeu veure un senzill mapa del firmament del mes de desembre de 2017. I tot això gràcies al Planetari de Quebec.

Imatges:

1.- Tardor a Vic, Osona. Enric Marco
2-5.- Moments del mes a partir del programa Stellarium.

La contaminació lumínica no s’atura a nivell mundial

Ens havien dit que amb l’arribada dels LED a l’enllumenat públic de les nostres ciutats s’aconseguiria un gran estalvi econòmic i de retruc, una minva important del balafiament energètic que representa la contaminació lumínica. Un treball que acaba d’eixir publicat i que analitza les dades d’enllumenat a nivell mundial entre els anys 2012 i 2016 desmenteix categòricament aquesta afirmació. Les zones il·luminades nocturnes ocupen cada vegada més superfície a un ritme d’un 2.2 % anual i la potència radiada també ho fa al mateix ritme.

La causa d’aquest contrasentit en que l’estalvi esperat per l’ús d’una nova tecnologia resulte en un increment del seu ús cal buscar-la en l’efecte rebot també conegut com a paradoxa de Jevons. Ha passat en totes les tecnologies de l’enllumenament. En passar de l’ús del ciri al gas, en ser més barat, s’il·luminaren les cases i alguns carrers. Va ser, però, la introducció de la llum elèctrica, després de l’invent d’Edison, quan la reducció del preu de la nova tecnologia permeté enllumenar tota la ciutat. S’estima que l’enllumenat exterior va créixer a un ritme d’un 3 a 6% anual durant la segona part del segle XX. Aquesta dèria d’il·luminar-ho tot ha portat a la pèrdua de la nit amb el resultat que actualment la meitat d’Europa i una quarta part de Nord-Amèrica suporten unes nits tan brillants que els seus ciutadans tenen modificat els cicles circadians, el ritmes naturals que imposen el dia i la nit.

Després d’anys de debat sobre la importància de la sostenibilitat, de no malbaratar recursos i després d’anys de campanyes de conscienciació sobre el perill de l’ús indiscriminat dels LED molts blancs (d’altes temperatures de color) pel seu efecte contaminant sobre el medi ambient i la salut humana, era interessant veure si el consum de llum i la seua potència havia disminuït a nivell global o no durant els darrers anys.

Per determinar-ho s’han usat les dades del satèl·lit polar Suomi NPP que amb el seu detector VIIRS DNB (Visible Infrared Imaging Radiometer Suite Day-Night Band) escaneja les nits del planeta des del 2012. Aquest sensor mesura en una banda de 500 a 900 nm,  pròxima a la banda en la que és sensible l’ull humà i amb una resolució de 750 m per píxel. Aquesta sensibilitat tant espectral com espacial ha permés, per primera vegada, mesurar els canvis de l’enllumenat a nivell de ciutats o països.

I quins han estat els resultats? Doncs les dades del sensor VIIRS DNB mostren que durant el període 2012-2016, les zones il·luminades i l’emissió d’aquestes àrees augmenten en la majoria dels països en el rang de 500-900 nm, amb increments globals del 2,2% per any per àrea il·luminada i 2,2% anual per la brillantor d’àrees contínuament il·luminades. En general, el resplendor de les àrees il·luminades per sobre d’un llindar de 5 nWcm-2 sr-1 van augmentar en un 1,8% anual.

Fig. 1. Patrons geogràfics en els canvis d’il·luminació artificial. Els canvis es mostren com un ritme anual per a la zona (A) il·luminada i la radiància de les àrees de llum estable (B). Els ritmes anuals es calculen a partir dels canvis durant el període de quatre anys.

Aquests increments d’emissions han disminuït en ben pocs països. Es pot veure clarament en Síria i Iemen a causa de la guerra. També a causa dels devastadors incendis d’altres zones les dades d’augment d’enllumenat no estan clares i semblen disminuir. Molts incendis han donat valors molt grans d’emissions i superfície il·luminada però en apagar-se sembla que el país està més fosc a la nit. És el cas espectacular d’Austràlia que sembla que és més fosc en 2016 que en 2014.

Un conjunt de països semblen tindre emissions estables, entre els quals es troben els països més brillants del món, entre ells Espanya i els Estats Units.

Amb tot, el  creixement desmesurat de zones il·luminades s’ha produït en els països en vies de desenvolupament d’Amèrica del Sud, Àfrica i Àsia.

Figura 2. Canvi absolut de l’àrea il·luminada de 2012 a 2016. Els píxels que augmenten en l’àrea es mostren en vermell, els píxels que disminueixen a la zona es mostren com a blaus i píxels sense cap canvi d’àrea es mostren grocs. Cada píxel té una àrea gairebé igual de 6000 ± 35 km2. Per facilitar la interpretació, l’escala de color s’escurça a 200 km2, però hi ha alguns píxels que tenen canvis de fins a ± 2000 km2.

L’aparent constància de l’enllumenat dels països rics és segurament un efecte de selecció. El detector VIIRS DNB no és sensible a l’increment de superfície il·luminada amb la nova tecnologia LED, sobretot la de colors molts blancs (temperatura de color > 3000 K) que emet molt de color blau amb una longitud d’ona fora del rang 500-900 nm del sensor. Això ha fet que una ciutat com Milà que ha canviat totalment l’enllumenat del seu centre amb LED de 4000 K semble més dèbil en les imatges del satèl·lit Suomi. Tanmateix les fotos obtingudes pels astronautes des de l’Estació Espacial Internacional constaten clarament l’augment de brillantor de la ciutat.

En definitiva, la tan publicitada revolució de l’enllumenat exterior que anava a portar la tecnologia LED només ha servit per fer més brillants les ciutats. Aquestes làmpades són ara més barates i, per tant, aquells carrers, pedanies, pobles que abans patien una aparent falta de llum i de la qual protestaven els veïns són il·luminats alegrement, augmentant la factura energètica. Així que finalment els LED no estalvien tant ni són sostenibles.

Article:
Artificially lit surface of Earth at night increasing in radiance and extent., Christopher C. M. Kyba1, Theres Kuester, Alejandro Sánchez de Miguel, et al. Science Advances 22 Nov 2017: Vol. 3, no. 11, e1701528

Imatge: Foto nocturna de la península Ibèrica des de l’Estació Espacial Internacional. NASA/ESA

De l’estrany objecte que vingué d’un altre sistema estel·lar

Fa unes setmanes parlavem del primer asteroide interestel·lar descobert. Batejat amb el nom ʻOumuamua,  aquest objecte únic va ser captat el 19 d’octubre de 2017 pel telescopi Pan-STARRS 1 a Hawaii. Observacions posteriors del Very Large Telescope (VLT) d’ESO a Xile i altres observatoris de tot el món han mostrat que ha viatjat per l’espai durant milions d’anys abans de la seua trobada casual amb el nostre sistema estel·lar. Però la sorpresa no s’acaba ací: ʻOumuamua sembla ser un objecte metàl·lic o rocós altament allargat de color vermell fosc, d’uns 400 metres de longitud, i és diferent del que normalment es troba en el Sistema Solar.

El nom ʻOumuamua es va triar per l’equip del telescopi Pan-STARSS. Prové del hawaià que significa “el que arriba de lluny”. El primer caràcter no és un apòstrof sinó el caràcter hawaià ʻOkina.  La Unió Astronòmica Internacional utilitza una nomenclatura molt estricta per designar objectes menors. Si és un cometa o asteroide es posa C/ o A/ respectivament seguit de l’any del descobriment i una combinació de lletres i números. Donat que aquest és el primer objecte extrasolar detectat i, per tant, s’ha encetat la possible observació d’altres similars s’usarà la lletra  I/. Així les maneres correctes de referir-se a aquest objecte serien: 1I; 1I/2017 U1; 1I/ʻOumuamua; i 1I/2017 U1 (ʻOumuamua).

Si al principi semblava que es comportava com un cometa, la falta d’emissions de gas en passar prop del Sol va fer concloure els astrònoms que era realment un asteroide. Tanmateix un asteroide ben peculiar. Amb una inclinació orbital de 123° respecte al pla dels planetes, una velocitat de 26,33 km/s respecte al Sol quan venia cap al sistema solar, una velocitat de 87,71 km/s en el punt de màxima aproximació al Sol (periheli) seguint una òrbita hiperbòlica amb excentricitat de 1,2, estava ben clar que provenia d’un altre sistema estel·lar.

El pocs dies que va estar a l’abast dels grans telescopis terrestres van permetre fer-ne un estudi ben acurat.

Combinant les imatges de l’instrument FORS del VLT (amb quatre filtres diferents) amb les d’altres grans telescopis, l’equip d’astrònoms dirigit per Karen Meech (Institut d’Astronomia, Hawaii, EUA) va descobrir que ‘Oumuamua varia moltíssim la seua brillantor, en un factor de deu, a mesura que gira sobre el seu eix cada 7,3 hores.

Karen Meech ho explica: “Aquesta gran variació en brillantor, poc comuna, significa que l’objecte és molt allargat: la seua longitud és unes deu vegades més gran que la seua amplada, amb una forma complexa i enrevessada. També vam descobrir que té un color vermell fosc, similar als objectes del Sistema Solar exterior, i confirmem que és totalment inert, sense cap indici de pols al voltant d’ell “.

Aquestes propietats suggereixen que ‘Oumuamua és dens, possiblement rocós o amb gran contingut metàl·lic, sense quantitats significatives de gel ni aigua, i que la seua superfície ara és fosca i està enrogida a causa dels efectes de la irradiació de raigs còsmics durant milions d’anys. S’estima que mesura almenys 400 metres de llarg.

El pas d’aquest objecte tan estrany per l’interior del Sistema solar ens recorda la novel·la de ciència ficció Cita con Rama de l’escriptor Arthur C. Clarke. No vull revelar res de la història d’uns astronautes que exploren un nou cos que arriba a l’interior del Sistema Solar. Si no l’heu llegida us la recomane.  La similitud de Rama amb ‘Oumuamua és extraordinària i, per això a molts de nosaltres ens hagués agradat més que s’hagués posat el nom Rama per al primer objecte extrasolar detectat que ens visita.

Imatges:

1.- Il·lustració artísitica que mostra el primer asteroide interestel3lar: ‘Oumuamua. ESO/M. Kornmesser.
2.- Recreació de l’objecte Rama. Cita con Rama (1972)