Solar Orbiter fa les primeres mesures

Solar Orbiter, la nova sonda de l’Agència Espacial Europea (ESA) per a l’exploració del Sol, va ser llançada sense problemes el passat dilluns 10 de febrer, des de Cap Canaveral a Florida i ara viatja cap a la nostra estrella. Serà un llarg viatge ja que per assolir la seua meta necessitarà una assistència gravitatòria de la Terra i diverses de Venus per a que d’aquesta manera poder sortir del plànol de l’eclíptica i explorar els pols solars.

Solar Orbiter porta a bord un conjunt de 10 instruments, alguns d’ells per fer mesures in situ  i d’altres de teledetecció per observar la superfície solar turbulenta, l’atmosfera exterior calenta del Sol i els canvis del vent solar. Els instrumentes de teledetecció obtindran imatges d’alta resolució de l’atmosfera del Sol (la corona) i del disc solar. Els instruments in situ mesuraran el vent solar i el camp magnètic solar als voltants de l’òrbita.

Els quatre instruments in situ mesuren ara mateix les propietats ambientals al voltant de la nau, especialment les característiques electromagnètiques del vent solar, el corrent de partícules carregades que allibera el Sol. Tres d’aquests instruments in situ compten amb sensors en el braç de 4,4 m de llarg.

“Mesurarem valors de camps magnètics milers de vegades més petits que els que coneixem a la Terra -assenyala Tim Horbury, de l’Imperial College de Londres, principal investigador del magnetòmetre (MAG) -. Fins i tot els corrents en els cables elèctrics de la sonda generen camps magnètics molt més grans que els que necessitem mesurar. Per això, els nostres sensors estan instal·lats en un braç, per mantenir-los allunyats de l’activitat elèctrica de la nau “.

Les dades recollides amb l’instrument MAG durant el desplegament del braç de la nau espacial Solar Orbiter de l’ESA mostren com el camp magnètic disminueix des de la proximitat de la nau espacial fins on es despleguen realment els instruments. ESA/Solar Orbiter/MAG.

Els controladors de terra del Centre Europeu d’Operacions Espacials de Darmstadt (Alemanya) van activar els dos sensors del magnetòmetre, un prop de l’extrem de braç i un altre més a prop de la nau, unes 21 hores després de l’enlairament. L’instrument va registrar dades abans, durant i després de desplegar-se el braç, el que va permetre als científics comprendre la influència de la nau en els mesuraments una vegada ja es troba en l’entorn espacial.

Solar Orbiter es comunica amb la Terra unes 10 hores al dia, actualment des del l’estació de Cebreros, a prop de Madrid. Dades del 24 de febrer, ja a quasi 7 milions de km de la Terra. ESA

Les dades rebudes mostren com es redueix el camp magnètic des dels voltants de la nau fins al punt on estan desplegats els instruments -afegeix Tim-. Això confirma de manera independent que el braç s’ha desplegat i que els instruments realment proporcionaran en el futur mesuraments precisos “.

Més informació de la missió:
La missió Solar Orbiter de camí cap al Sol

Imatges:

1.- Llençament de Solar Orbiter la matinada del 10 de febrer 2020 des del Kennedy Space Center, Cape Canaveral, Florida, USA. ESA–S. Corvaja.

Amb el Fòrum Catarroja per parlar de contaminació lumínica i sostenibilitat

Invitat pel Fòrum Catarroja, i dins de les activitats que s’estan duent a terme al voltant de la sostenibilitat, fa uns dies vaig tindre el plaer de parlar d’un problema mediambiental poc coneguda pel públic però que té grans efectes sobre el medi ambient i la salut humana.

Es tracta de la contaminació lumínica, i, al contrari del que ens pretenen vendre, en la majoria de les nostres ciutats l’actual enllumenat públic no compleix les regles bàsiques de la sostenibilitat. Només algunes ciutats valencianes com Riba-roja de Túria, Meliana, Aras de los Olmos, Albalat dels Sorells i València s’han sumat de veritat a tindre unes llums càlides més amigables amb el medi ambient i amb la salut humana.

La sostenibilitat, i el desenvolupament sostenible, per definició inclou sempre obligatòriament els tres àmbits econòmic, social i ambiental. Així el desenvolupament sostenible requereix un desenvolupament tant econòmic (cal anar cap a l’eficiència) com social (no afectar el benestar de la població) mentre es protegeix el medi ambient. En el moment que no es té en compte un o dos d’ells deixa de tractar-se de sostenibilitat.

Moltes vegades la instal·lació de l’enllumenat públic, fins i tot el més modern amb LED de llum excessivament blanca, no és sostenible. La raó és que la potència dels llums és excessiva, amb la qual cosa és energia lumínica malbaratada, els llums blancs afecten el medi ambient i, a més aquest tipus d’enllumenat perjudica la salut humana, a través de la incidència en la producció de melatonina.

D’aquestes i d’altres coses vaig parlar al Fòrum de Catarroja davant d’un públic atent que va fer moltes preguntes al final.

Presentat per Conxa Romero, que també va fer les fotos d’aquest article, la meua intervenció va ser precedida per Elisa Gimeno que ens introduí en els Objectius de Desenvolupament Sostenible  (ODS). Una introducció necessària per conscienciar els presents de la necessitat de millorar el present per salvar el futur de les generacions dels humans que ens seguiran.

Vídeo del anunci de la xarrada: Contaminació lumínica i sostenibilitat

Enllaç al vídeo: Contaminació i sostenibilitat. Enric Marco, 27 gener 2020

La missió Solar Orbiter de camí cap al Sol

Solar Orbiter. ESA/ATG medialab

Aquesta matinada a les 5:03 h. s’ha enlairat des de cap Canaveral a Florida (EEUU) la sonda Solar Orbiter, una missió dirigida per l’Agència Espacial Europea (ESA), amb forta participació de la NASA, per abordar la qüestió central sobre com el Sol crea i controla l’heliosfera, la gran regió de l’espai, en forma de bambolla que envolta el Sol i creada per les partícules energètiques que aquest emet.

Solar Orbiter podrà estudiar detalladament el Sol gràcies a la combinació d’instruments científics amb que va equipat i a l’òrbita que recorrerà al seu voltant. La sonda s’hi acostarà fins a una distància de 42 milions de quilòmetres, més prop que el planeta Mercuri, fet que implica que les parts de Solar Orbiter que miren al Sol hauran de suportar temperatures de més de 500 ºC, mentre que les parts a l’ombra estaran al voltant de -180 ºC. Al llarg de la missió, l’òrbita de la sonda anirà augmentant d’inclinació respecte a l’eclíptica fins a uns 30º, la qual cosa permetrà obtenir per primer cop imatges d’alta resolució dels pols solars.

John Kraus @johnkrausphotos

Un equip de l’Institut de Ciències del Cosmos de la Universitat de Barcelona (ICCUB-IEEC) i un altre del GACE/LPI (Grup d’Astronomia i Ciències de l’Espai, Laboratori de Processat d’Imatges), del Departament d’Enginyeria Electrònica (Escola Tècnica Superior d’Enginyeria) i del Departament d’Astronomia i Astrofísica (Facultat de Física) de la Universitat de València han treballat en el desenvolupament i fabricació de l’instrument PHI (Polarimetric and Helioseismic Imager) que va a bord de la sonda Solar Orbiter.

El PHI (Polarimetric and Helioseismic Imager) proporcionarà mesures d’alta resolució del camp magnètic de la fotosfera solar i mapes de la seua brillantor en l’espectre visible. També produirà mapes de velocitat del moviment del material de la fotosfera que permetrà realitzar recerques heliosísmiques de l’interior del Sol, en concret de la zona convectiva, en la base del qual es crea i reforça el camp magnètic i a través del qual puja a la “superficie” o fotosfera.

John Kraus @johnkrausphotos

L’ICCUB s’ha responsabilitzat de desenvolupar i implementar un sistema d’estabilització d’imatges (ISS) que permetrà compensar els moviments de la sonda per poder obtenir imatges de la qualitat requerida. «Solar Orbiter és la missió solar més completa des del punt de vista instrumental», explica Josep M. Gómez Cama, investigador de l’ICCUB i membre del Departament d’Enginyeria Electrònica i Biomèdica de la UB. Concretament, la sonda disposa de deu instruments que pesen en total 209 quilograms. «La limitació de pes també ha estat un repte a l’hora de dissenyar l’instrument PHI, que pesa uns 30 kg», destaca Gómez Cama. Quatre dels instruments, que permeten la detecció del vent solar (plasma i camp magnètic), radiació i partícules emeses, funcionen in situ, mentre que els altres sis ho fan de manera remota i permeten obtenir imatges en diferents longituds d’ona i fer espectroscòpia de la fotosfera i corona solars.

Pas endavant per a la meteorologia espacial

D’altra banda, els investigadors del Grup de Física Heliosfèrica i Meteorologia Espacial (HPSWG) de la UB han proporcionat suport científic a l’equip del detector de partícules energètiques (EPD) construït per un equip de la Universidad de Alcalá. Els membres de l’HPSWG, experts en modelatge i anàlisi de dades, han desenvolupat models per predir l’entorn de radiació de partícules amb què es trobarà Solar Orbiter, i estan desenvolupant eines per facilitar l’anàlisi de les mesures de partícules que recollirà.

En les seues diverses aproximacions al Sol, la sonda Solar Orbiter orbitarà a una velocitat semblant a la solar la qual cosa permetrà fer el seguiment continuat d’una zona activa del Sol durant un llarg temps i planificar campanyes específiques de manera remota. Segons Àngels Aran, investigadora del grup HPSWG, «els resultats obtinguts per Solar Orbiter permetran entendre la física que connecta l’estrella amb el medi interplanetari i ajustar així els models actuals de meteorologia espacial». «A més —afegeix la investigadora—, la combinació d’observacions de Solar Orbiter amb les dades obtingudes des d’altres sondes situades a l’espai interplanetari, com a l’entorn terrestre, ens donarà una visió en estèreo del mateix esdeveniment». 

Solar Orbiter a l‘Astrotech payload processing facility, Florida, USA, el 21 de gener 2020, l’últim dia abans del muntatge en la còfia del coet. Destaca la pantalla de protecció solar negra. ESA–S. Corvaja

El Sol és una estrella de massa mitjana en un estadi avançat i estable de la seua evolució. Tanmateix, experimenta erupcions periòdiques a curt termini i de difícil predicció conegudes com a activitat solar. El domini del Sol s’estén més enllà de l’atmosfera solar, mitjançant el vent solar, donant lloc a l’heliosfera, que inclou l’espai interplanetari i l’entorn planetari més enllà de Plutó. Així que comprendre l’acoblament del Sol i l’heliosfera és primordial per entendre el funcionament del nostre sistema solar. Les diferents condicions del vent solar i de l’activitat solar són els principals motors de la meteorologia espacial. La meteorologia espacial fa referència a la resposta de l’entorn espacial a les tempestes solars, que poden tenir un impacte significatiu en la societat actual. Per exemple, l’activitat solar, com ara erupcions solars i ejeccions de massa coronal, poden provocar ràfegues de partícules energètiques que causen danys en els satèl·lits, afecten els sistemes de navegació, o perjudiquen els astronautes en la futura exploració de la Lluna i Mart.

Aquests esdeveniments de partícules energètiques solars, principalment electrons, protons i ions més pesants fins a energies d’uns quants gigaelectronvolts, imposen restriccions a les activitats humanes a l’espai. Són difícils de predir pel coneixement incomplet dels processos físics bàsics implicats i la manca d’observacions a tota l’heliosfera.

Un dels propòsits de la missió de Solar Orbiter és explorar els fenòmens que passen en la zona dels pols solars. Com que la Terra i les sondes que s’hi llencen es troben en el pla de l’eclíptica, que correspon aproximadament a la zona equatorial solar, cal donar una empenta a la sonda per fer-la “pujar” l’òrbita. Això s’aconsegueix agafant energia dels planetes a través de les assistències gravitatòries. Així, Solar Orbiter farà una assistència gravitatòria al volant de la Terra i nombroses passos al voltant de Venus al llarg de la seua missió per ajustar la seua òrbita, apropant-la al Sol i per fer-la fora del pla de la eclíptica per observar el Sol des d’inclinacions cada vegada més altes. D’aquesta manera, la nau espacial podrà prendre les primeres imatges de les regions polars del Sol, unes dades mol importants per comprendre el funcionament del Sol.

Assistència gravitatòria de la Terra el 26 de novembre de 2021. ESA/ATG medialab

La combinació dels diferents instruments a bord de la nau espacial i la seua òrbita proporcionarà nova informació per comprendre les característiques solars i la seua connexió amb l’heliosfera i, al seu torn, ajudarà a comprendre la generació de tempestes solars.

Diverses assistències gravitatòries de l’òrbita de Solar Orbiter fins al 2030. ESA

Per als amants de les xarxes socials, s’ha creat l’usuari twitter @ESASolarOrbiter i l’etiqueta #WeAreAllSolarOrbiters per seguir al moment la missió.

Més informació sobre la missió al Solar Orbiter Publication Archive

També existeix un llibret Facing the Sun on s’explica la missió per a periodistes i public en general, en el idiomes de treball de la ESA. Ací està la versió en castellà.

Ací està també penjat aquest Mirando al Sol que explica la missió Solar Orbiter.

Ens ha deixat Vicent Domingo, el gran senyor de la física solar

Vicent Domingo Codoñer, gran senyor de la física solar i de l’astrofísica valenciana i europea ens ha deixat per sempre. Actualment jubilat, era professor honorari al Departament d’Astronomia de la Universitat de València i membre del Grup d’Astronomia i Ciències de l’Espai, Laboratori de Processat d’Imatges (GACE/LPI).

Vicent es va formar en la Universitat de València i formava part de la primera generació de físics valencians que van eixir al món per aprendre primer i aportar molt de la seua experiència i saviesa. Vicent tenia una extensa experiència investigadora en l’àmbit de la física nuclear i de partícules, en física solar i en projectes espacials.

Va treballar en la primera part de la seua extensa carrera investigadora a l’Institut de Física CospuscularI/CSIC-Universitat de València, al Centre d’Études Nucléaires (França), al CERN (Suïssa), a la Universidad de La Paz (Bolivia), al MIT (EUA) i a la University of Colorado (EUA).

La segona part de la seua vida investigadora començà el 1970 quan entrà a formar part de la Agència Espacial Europea (ESA). Allí  va ser el científic responsable del projecte de la missió d’estudi del Sol SOHO, de l’Agència Espacial Europea, durant el desenvolupament fins al seu llançament l’any 1995. Una vegada a l’espai entre 1995 i 1998 va ser director del seu funcionament des del Goddard Space Flight Center de la NASA, a Maryland (EUA).  La missió  SOHO, amb una durada nominal de dos anys, assoleix quasi  25 anys de funcionament i és, actualment, el satèl·lit d’observació solar amb més edat deSOHO1 Foto ESA la història.

L’any 2000, ja jubilat de la ESA,  Vicente Domingo va tornar a la Universitat de València per a formar un grup de física solar i de desenvolupament d’instrumentació espacial per a missions solars, dins del Grup d’Astronomia i Ciències de l’Espai (GACE). Des de llavors i fins a la seua  mort ha participat en el desenvolupament de les mission estratosfèriques Sunrise i de l’instrument SO/PHI per la nova missió solar Solar Orbiter que serà llençada cap el Sol, si tot funciona correctament, la setmana que ve des de Cap Canaveral.

Gràcies Vicent pel que ens has donat, tant científicament com personalment.

El cel de febrer de 2020

L’any 2020 avança inexorablement i, ara, en febrer, les temperatures s’enfilen cap amunt i ens deixen cels més rasos després d’haver-nos prohibit l’observació celeste des dels primers dies de l’any.

La constel·lació d’Orió continua essent l’objecte més admirat del cel, amb el cinyell dels tres estels ben visible que la fan fàcil de trobar. I des d’ella ens permet de trobar la Llebre al seus peus, els gossos de cacera a la seua dreta i el gran Taure, a la V de les banyes, dalt i a la seua esquerra. No deixeu d’explorar aquesta part del cel de nit, tant si esteu a ciutat o al camp ja que la brillantor dels seus estels principals ens ho permet sempre.

Betelgeuse, l’estel supergegant roig situat al muscle dret d’Orió, continua perdent lluminositat..  Els astrònoms la segueixen de prop i han arribat a la conclusió que des de setembre de 2019 la temperatura de Betelgeuse ha baixat 100 graus, mentre que la lluminositat ha caigut quasi un 25 por cent. A partir d’aquestes mesures i amb l’ús dels model d’estructura i evolució estel·lar, el radi de l’estrella haurà augmentat  un 9 por cent.

Mentre aquestes coses passen ben lluny enllà, a uns 700 anys llum, més prop d’ací, els planetes es mouen al cel jugant a acaçar-se, moltes vegades ajudats per la Lluna.

Només Venus i Mercuri seran visibles al capvespre. Una vegada ja s’ha amagat el Sol sota l’horitzó oest, apareixerà ben alt i brillant el planeta Venus. Vist al telescopi, aquest planeta mostra ara més de la meitat del disc enllumenatt, cosa que el fa especialment brillant durant les primeres hores de la nit. Tanmateix encara no ha assolit la seua màxima separació del disc solar (l’anomenada màxima elongació oriental). Això no ocorrerà fins els primers del mes de març. A la figura adjunta podreu veure la posició de Venus i la seua òrbita vista des de la superfície de la Terra el 10 de febrer.

10 de febrer 2020. Òrbites de Venus i Mercuri vistes des de la Terra. Màxima elongació oriental de Mercuri en la posta de Sol. Mercuri a 18,2° del Sol.

Mercuri, l’altre planeta interior a l’òrbita terrestre, serà visible aquest mes de febrer. Després de la posta de Sol serà observable cap a l’oest cada dia prop de l’horitzó però només durant pocs minuts. La rotació de la Terra farà que davalle ràpidament rere l’horitzó per la qual cosa és important cercar indrets sense obstacles en direcció oest. El dia 10 de febrer Mercuri es trobarà en el punt de màxima separació angular del Sol (màxima elongació oriental). En l’òrbita dibuixada a la figura adjunta veureu com es troba just a l’extrem de l’òrbita vista des de la Terra.

Serà, però, a la matinada quan els planetes i la Lluna facen el ball més espectacular. Si dediqueu cada dia uns minuts per mirar cap a l’est just una mitja hora abans de l’eixida del Sol, podreu meravellar-vos del moviment d’acostament d’aquests planetes tot amanit de tant en tant per la presència de la Lluna.

Poc abans de l’alba, podreu veure l’alineament dels planetes Saturn, Júpiter i Mart, tots al voltant de la constel·lació de Sagitari. Des de l’horitzó es trobarà Saturn. Una mica amunt Júpiter i més alt encara Mart, que al llarg del més anirà acostant-se a Júpiter, fins al superencontre del mes de març. Però, d’això ja en parlarem.

La Lluna en quart minvant farà acte de presència durant la segona quinzena del mes. Del 18 al 21 de febrer la Lluna anirà fent parella amb cadascun dels planetes observables de matinada.

El 18 de febrer la Lluna s’acostarà a Mart, tant que a les 15:22 la Lluna taparà el planeta. Serà un eclipsi de Mart que, en produir-se de dia, serà inobservable per a nosaltres. Per contra, sí que serà visible per als observadors d’`Amèrica del Nord.

El 19 de febrer la Lluna se situarà entre Júpiter i Mart mentre que el 20 ja serà parella de Saturn. Finalment el 21 completarà un bell alineament amb tots els planetes. L’observació atenta d’aquest passeig de la Lluna permetrà veure en directe el moviment de la Lluna al cel i recordar-nos que és un satèl·lit de la Terra i que l’orbita.

I Betelgeuse no ha explotat de moment.

S’ha estimat que cada 50 anys de mitjana una estrella massiva de la Via Làctia explota. Però no s’observen tantes supernoves en la Galàxia com diuen els estudis. L’última supernova observada en la nostra galàxia va ser probablement observada per l’astrònom britànic John Flamsteed en 1680. D’ella queda el romanent conegut com Cassiopeia A. Aparentment estem endarrerits alguns segles per que fa a la taxa anual calculada. Per això la possible explosió de Betelgeuse ha entusiasmat tant els astrònoms ja que ens reconciliaria d’alguna manera amb la taxa anual d’explosions De tota manera encara ens en faltarien moltes. On són les nostres supernoves?

La Lluna presentarà les següents fases en hora local:

Fase Mes Dia Hora
Quart creixent Febrer 2 02 42
Lluna plena Febrer 9 8 33
Quart minvant Febrer 15 23 17
Lluna nova Febrer 23 16 32

Si voleu obtenir més informació podeu punxar aquest enllaç. També podeu veure un senzill mapa del firmament del mes de febrer de 2020. I tot això gràcies al Planetari de Quebec.

Imatges

1.- Cassiopeia A observada pel Telescopi Espacial Hubble. Aquesta nebulosa fou probablement observada per John Flamsteed en 1680, i és el resultat de l’última supernova observada en la Via Làctia. NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration.
2.- Imatge de la nebulosa que envolta a l’estrella supergegant vermella Betelgeuse. La nebulosa està composta per material llançat per l’estrella a l’espai. El petit cercle vermell de centre representa la posició de la superfície visible de Betelgeuse. El disc negre correspon a una part molt brillant de la imatge que va ser tapada per permetre la detecció de la nebulosa menys brillant. ESO / VLT
3-6- Simulacions de Stellarium.

Què li passa a Betelgeuse?

Durant les nits d’hivern la constel·lació d’Orió és ben visible. Les tres estrelles alineades del cinturó ajuden a que siga una de les més conegudes del cel. La mitologia ens diu que representa un gegant caçador. I aquestes setmanes, Betelgeuse, l’estel rogenc situat al seu muscle dret, sembla que s’està apagant. És un senyal que està a punt d’explotar com a supernova?

Betelgeuse és l’estel més brillant de la constel·lació i un dels 10 més brillants del cel. Tanmateix actualment la seua brillantor ha minvat tant que a finals de desembre havia baixat a la posició 21.

Quina podria ser l’explicació d’aquest fenomen?

Betelgeuse és una supergegant roja, una immensa bola de gas d’unes 12 masses solars, un estel evolucionat que fa mil·lennis deixà la tranquil·la seqüència principal on cremava hidrogen per formar heli. Ara unflada exageradament travessarà fases successives de cremat d’hidrogen, heli, carboni, neó, oxigen i silici. Al final d’aquest procés, l’estrella acabarà amb una estructura interna similar a la d’una ceba, amb diverses capes, cadascuna d’una composició diferent. I quan les cendres siguen de ferro al centre, ja no es podrà generar més energia i s’esdevindrà el col·lapse i l’explosió de supernova.

Betelgeuse és relativament jove. Només té un 10 milions d’anys mentre que el Sol, molt més vell, es troba a la meitat de la seua vida d’uns 4500 milions d’anys. Les altíssimes pressions i temperatures de l’interior d’aquest tipus d’estels supergegants i tan massius tenen com a conseqüència que cremen molt ràpidament i tenen una vida curta. Si vius intensament la vida, la cremes molt de pressa.

Betelgeuse està a només 700 anys llum, prou prop per poder resoldre el seu disc estel·lar amb els nostres telescopis. La imatge superior, realitzada amb els radiotelescopis de  l’Atacama Large Millimeter/submillimeter Array (ALMA), ens mostra l’estel supergegant roig, una de les estrelles més grans conegudes. Les antenes d’ALMA ens presenten l’estrella com d’unes 1400 vegades més gran que el Sol. La figura mostra la mida de l’estrella comparada amb el Sistema Solar. Si situarem Betelgeuse al lloc del Sol engoliria Mercuri, Venus, Terra i Mart i fins i tot el gegant del gas Júpiter. Només Saturn en restaria fora encara que sofriria la calor de l’estrella i, a poc a poc, s’aniria evaporant. I, donada la seua massa i edat, es considera que l’estel explotarà com a supernova en els pròxims 100 000 anys. Però, realment podria ser d’ací 1000 anys, o demà mateix. Ningú ho sap del cert.

Representació artística que mostra Betelgeuse amb una bombolla gegantina que bull a la superfície i una forta emissió de gas que va ser expulsada a sis radis fotosfèrics o aproximadament a una distància equivalent a l’òrbita de Neptú. ESO//L. Calçada.

I ara, des d’octubre la lluminositat de  l’estel està baixant ràpidament. A finals de desembre del 2019 la brillantor de Betelgeuse s’havia atenuat un factor 2,5, d’una magnitud aparent 0.5 a l’actual de 1.5. És a dir, l’estel és, ara mateix, un 2,5 més fosca que a l’estiu passat.

Betelgeuse està tan prop i és tan gran que és l’única estrella, sense comptar el Sol, de la qual podeu veure amb instrumentació sofisticada la seu superfície. I s’ha detectat una gran variació en l’aparició de zones fosques i brillants, que la converteix en una estrella variable. A més perd material i forma núvols de gas al seu voltant, que poden ser la causa de la baixada de brillantor observada actualment.  Les baixades i pujades de brillantor s’han observat regularment al llarg del temps des del segle XIX però mai s’havia vist una baixada tan profunda i continuada.

Així que la disminució de brillantor observada ara ha estat associada per alguna premsa a l’explosió imminent de Betelgeuse. De fet, no sabem exactament que passa a l’exterior d’una estrella pocs dies abans del seu col·lapse i explosió. Quins signes externs presenta una estrella abans de morir com a supernova? No se sap massa bé.

Tanmateix els astrofísics especialistes en el tema descarten que per ara Betelgeuse vaja a explotar. Només semblen efectes de les capes externes i dels núvols de material que l’envolten.

Simulació realitzada amb el programa Celestia de la constel·lació d’Orió tal com es podria veure des la Terra quan Betelgeuse esclate com a supernova. Hi ha, però, un detall a considerar. L’estel brillarà com la Lluna plena però continuarà essent un objecte puntual.

Ara bé, si tenim la sort que en la nostra vida l’estel es decidira a fer-nos un espectacle celeste serà un fenomen que no ens passarà per alt. Betelgeuse serà aleshores la supernova més brillant no mai observada, tan brillant com la Luna plena. A més, durant uns mesos seria visible tan de dia com de nit, i podríem caminar sota la llum de Betelgeuse. Passat aquest temps començaria a baixar la seua brillantor fins que cap als tres anys retornaria a la seua lluminositat habitual. Aquesta baixada de llum no s’aturaria ja que cap als sis anys Betelgeuse seria tan dèbil que deixaria de ser visible a ull nu. La constel·lació d’Orió perdria el seu muscle dret i el seu aspecte canviaria per sempre.

Mes informació:
Betelgeuse: Star’s weird dimming sparks rumors that its death is imminent
Betelgeuse: What’s up?
El enigma de Betelgeuse

Imatges:

1.- Betelgeuse és l’estrella brillant roja que se troba situada en la part superior dret de l’imatge. Hubble European Space Agency (HST/ESA).
2.- Sense atribució. Wikipedia Commons.
3.- Imatge via ESO.
4.- ESO/L. Calçada. A plume on Betelgeuse (artist’s impression with annotations)
5.- Infografia d’Heloïse Stavance.@Sydonai
6. HeNRyKus Celestia. Wikipedia Commons.

Què n’esperem del 2020?

L’any 2020 ha començat i serà bo saber que podem esperar en el món de la ciència i tecnologia en els camps de l’astronomia, la física i la biologia. I com cada any la revista Nature ens ho explica. Tractaré de fer-ne un resum.

Astronomia i exploració espacial

Des del punt de vista de l’exploració espacial, Mart, la Lluna i el Sol seran els objectius principals de les agències espacials.

Mart rebrà enguany una veritable invasió terrestre.  La NASA llençarà el mes de juliol el nou explorador Mars 2020, que recol·lectarà mostres per ser recollides en futures missions. A destacar que per primera vegada es desplegarà un petit helicòpter per explorar més terreny al voltant del rover. Si tot funciona bé serà el seu quart rover marcià, després del Spirit, l’Opportunity i el Curiosity, que és l’únic que encara funciona. Tot un rècord. El nou explorador, de moment, no té nom popular assignat.

Rússia juntament amb l’Agència Espacial Europea llançarà també a l’estiu la missió ExoMars2020 i desplegarà una estació fixa, Kazachok, i un explorador mòbil en la superfície marciana. El rover, anomenat Rosalind Franklin en honor a la descobridora de l’estructura del ADN, buscarà proves de vida passada o present en Mart. L’anterior missió ExoMars2016 acabà de manera regular, ja que aconseguí posar el satèl·lit ExoMars Trace Gas Orbiter (TGO) en òrbita però estavellà el Mòdul de descens Schiaparelli. Ara esperem que aquesta vegada el rover europeu-rus arribe a la superfície sa i estalvi. De moment sembla que tenen problemes amb el paracaigudes.

L‘oposició de Mart del 2020 també serà aprofitada per Xina per envair-hi el seu primer mòdul de descens, Huoxing-1, que desplegarà un petit explorador. Vol aprofitar l’experiència dels seus rovers lunars.

I finalment, els Emirats Àrabs Units enviaran un orbitador, en la que serà la primera missió a Mart d’un país àrab.

La Lluna continuarà, com no podia ser d’una altra manera, sent un objecte d’interés per a les agències espacials. Xina continuarà amb el seu programa d’exploració amb la missió Chang’e-5 que retornarà  mostres de roques a la Terra. Mentrestant la missió Hayabusa2 del Japó arribarà a la Terra portant les preuades mostres de l’asteroide Ryugu. Per la seua part OSIRIS-REx arrencarà trossets de l’asteroide Bennu.

Solar Orbiter. ESA/ATG medialab

El Sol serà també protagonista enguany ja que a la sonda Parker que ja l’orbita, s’hi sumarà la gran nau europea Solar Orbiter, que amb 11 instruments científics, estudiarà de ben prop la corona i cromosfera solars.  A principis de febrer, un enorme coet Atlas V 411 el llençarà cap a la nostra estrella des de Cap Canaveral. Ja en parlarem.

Els científics de la col·laboració Event Horizon Telescope, que feren possible obtenir la primera imatge del forat negre de la galàxia M87 l’abril passat, tenen previst enguany donar-nos nous resultats espectaculars, aquesta vegada del forat negre supermassiu de la nostra galàxia, anomenat Sagitari A*.

Gaia, operada per l’Agència Espacial Europea (ESA), ha creat el mapa tridimensional més gran, precís, de la nostra Galàxia. Aquesta imatge mostra la visió de la Via Làctia basada en mesures de gairebé 1.700 milions d’estrelles.

A més a més, a final d’any es preveu publicar la nova actualització del mapa  3D de la Via Làctia, a partir de les dades de la missió Gaia. Les anteriors actualitzacions ens donaren molta informació relacionades amb l’estructura, el origen i l’evolució de la Via Làctia.

I els consorcis LIGO i Virgo continuaran descobrint ones gravitatòries causades per col·lisions de forats negres, estels de neutrons i, fins i tot forats negres i estels.

Física

Pròximament s´ha de debatre la proposta del Centre Europeu de Recerca Nuclear (CERN) de la futura construcció d’un nou col·lisionador sis vegades més potent que l’actual Gran Col·lisionador d’Hadrons LHC. Si s’aprova el projecte costaria uns 21.000 milions d’euros i caldria construir un nou anell de 100 km de circumferència sota la ciutat de Ginebra.

Des del descobriment del bosó de Higgs el 2012 no s’ha descobert cap nova partícula al CERN, per la qual cosa es pensa que cal construir màquines molt més potent per estudiar la matèria a més altes energies. Tanmateix, no tothom pensa que és bona idea fer unes despeses tan elevades per un retorn científic desconegut. La solució final la sabrem enguany.

I potser s’aconseguisca el somni de tot físic, aconseguir material sense resistència a temperatura ambient. De moment només s’ha pogut passar corrent sense pèrdues a molt baixes temperatures o a altes pressions. Però després de l’èxit dels compostos coneguts com a “superhidrurs de lantà”, que el 2018 van batre tots els rècords de temperatura per a la superconductivitat, els investigadors esperen sintetitzar superhidrurs d’itri que podrien ser superconductors a temperatures de fins a 53 ° C.

Finalment el sector energètic podria assolir una altra fita durant els Jocs Olímpics de Tòquio al juliol, quan es preveu que Toyota revele el primer prototip d’un cotxe alimentat per bateries d’ió de liti d’estat sòlid. Aquestes substitueixen el líquid que separa els elèctrodes de la bateria per un material sòlid, augmentant la quantitat d’energia que es pot emmagatzemar.

Moltes altres descobertes s’esperen en aquest 2020 en el camp de la biologia, com el del llevat sintètic, amb ADN creat en laboratori, les proves d’una vacuna contra la malària o el creixement d’òrgans humans en altres animals. Ho podeu llegir a l’article original de Nature.

Figures:
1- En una sala neta del Jet Propulsion Laboratory en Pasadena, California, els enginyers observen els primers moviments del Mars 2020 el 17 de desembre, 2019.

El cel de gener de 2020

L’any comença i el fred, finalment, ha arribat. La neu pinta de blanc les muntanyes dels Pirineus, mentre les planes deixen enrere les boires i els núvols sembla que podran impedir la contemplació del cel els primers dies de gener.

El fred no ajudarà a mantindre’s al costat del telescopi per veure amb ell o a ull nu els fenòmens celestes que podrem gaudir aquest primer mes de l’any.

Els planetes seran esquius aquests dies. Només Venus brillarà exultant al cel del capvespre mentre que Saturn i Mercuri passaren aquests dies per darrere del Sol, sent, per tant, inobservables.

A la matinada, però, poc abans de l’eixida del Sol hi haurà una mica més de joc de planetes.

El planeta Venus es troba en les millores condicions d’observació aquests dies. Al capvespre, en amagar-se el Sol, ja veurem cap al Sud-Oest i ben alt un objecte ben brillant que és difícil que no trobes. Fins i tot, abans que surten les primeres estrelles tindrem Venus dominant tot aquest cantó de cel. I, si no sou capaços de veure’l, tot i les referències que us donen, el 28 de gener, al voltant de les 19 hores, un tall de Lluna se situarà al seu costat. Seria bonic fer-ne una fotografia.

 

No caldrà esperar tant per veure una configuració celeste especial. La nit del 7 de gener la Lluna en quart creixent visitarà la constel·lació de Taure. Tot just al seu costat podrem admirar l’ull del Bou, Aldebaran, un estel gegant roig. L’espectacle estarà complet si admirem Orió, la gran constel·lació del gegant caçador.

La constel·lació d’Orió és molt fàcil de reconèixer al cel si troben les tres estrelles en línia, Alnitak, Alnilam i Mintaka (d’esquerra a dreta). Ja amb telescopi podrem trobar belles nebuloses de gas i pols, com la famosa Nebulosa del Cap de Cavall i la Nebulosa d’Orió.

Un cas apart es l’estrella Betelgeuse, una supergegant roja que mostra estranys signes d’una pròxima explosió en forma de supernova. Situada en el muscle dret del gegant, aquests dies ha perdut brillantor i els experts s’han entusiasmat a l’espera de veure una bell show celeste per Nadal. Tranquils, sembla que de moment no passarà.

Serà a l’eixida del Sol quan podrem veure millor una dansa de planetes. La Lluna, com sempre, ens ajudarà a reconèixer-los. Així la matinada del 21 de gener, cap a les 7:30, pocs minuts abans de l’eixida del Sol, una Lluna en quart minvant se situarà ben prop d’un feble planeta Mart, mentre Júpiter, prop de l’horitzó s’ho mira de lluny.

Si ens volem passar la nit al ras, tenim ocasió fer-ho tot esperant la pluja d’estels dels Quadràntids. La nit del 3 al 4 de gener, cap a la matinada, serà el màxim de la pluja, associada a les deixalles del cometa. Amb una taxa horària zenital THZ de 120, aquesta és una de les pluges de meteors més actives juntament als Perseids a l’agost i als Gemínids al desembre.

Gener també ens obsequiarà a un eclipsi de Lluna penumbral. La nit del 10 de gener la Lluna plena entrarà dins de la penombra de la Terra i la lluminositat minvarà moderadament. L’eclipsi serà tan suau que passarà sense pena ni glòria per a la majoria de la població.

Finalment dir-vos que el 5 de gener, a les 8:00, la Terra passarà pel periheli de l’òrbita al voltant del Sol. Aquell moment el nostre planeta se situarà en el punt de major aproximació al Sol, 0,98325 ua = 147092107 km.

La Lluna presentarà les següents fases en hora local:

Fase Mes Dia Hora
Quart creixent Gener 3 05 45
Lluna plena Gener 10 20 21
Quart minvant Gener 17 13 58
Lluna nova Gener 24 22 42

Si voleu obtenir més informació podeu punxar aquest enllaç. També podeu veure un senzill mapa del firmament del mes de gener de 2020. I tot això gràcies al Planetari de Quebec.

Imatges

1.- Fotografia del cinturó d’Orió, format per les estrelles Alnitak, Alnilam i Mintaka (d’esquerra a dreta). Al costat d’Alnitak també són visibles la Nebulosa de la Flama i la Nebulosa del Cap de Cavall (a l’esquerra), així com les nebuloses de reflexió NGC 2023, IC 434 i IC 435. A la cantonada superior esquerra de la imatge hi ha les nebuloses. generalitzat M 78 i NGC 2071. Es veuen molt bé les estrelles σ Orionis i 31 Orionis. La primera es troba a la dreta del Cap de Cavall i la segona, molt roja, a la dreta i més avall de Mintaka. myyorgda, Wikipedia Commons.
2-3.- Panoràmiques celestes de Stellarium.
4.- Mapa d’Orió. Härkä és Taure, i Jänis, Lepus, en la llengua de la imatge de Wikipèdia.
5.- Panoràmiques celestes de Stellarium.

No existe la iluminación navideña sostenible

No existe la iluminación navideña sostenible

Álvaro German Vilela/Shutterstock

Enric Marco Soler, Universitat de València

Hace años era tradición montar el belén y el árbol de Navidad durante el puente de la Inmaculada. Los niños esperaban expectantes para poner las figuritas en los lugares adecuados y decorar el árbol con las bolas, las guirnaldas y la estrella con su cola. Mientras, en la calle, el frío ocupaba su lugar natural a finales del otoño.

Actualmente esta imagen ha cambiado. Los niños han crecido y ya están para otras cosas y las temperaturas suaves se alargan hasta bien entrado el invierno. Por eso, para recordar que la Navidad está a la vuelta de la esquina, las administraciones municipales, desde hace ya unos años, instalan millones de luces en las calles, primero en el centro y poco a poco en los barrios periféricos.

Pero no nos engañemos. No lo hacen para fomentar el espíritu festivo y solidario de estas fechas sino para promover el consumo. ¿Por qué las luces se encienden cada vez más pronto, en noviembre, y no se apagan hasta pasada la festividad de Reyes?

Definición de sostenibilidad

Acabada la Cumbre por el Clima de Madrid (COP25), en un mundo en crisis climática, con los niveles de concentración de CO₂ cerca de 411 ppm y subiendo, cualquier nueva acción humana ha de ser evaluada para comprobar su sostenibilidad.

Incremento de la concentración del CO₂ desde los años 60 en el observatorio de referencia en Hawái.
NOAA ESRL Global Monitoring Division

Es necesario asegurar que satisface las necesidades de las generaciones actuales, pero sin afectar la capacidad de las futuras. En términos operacionales, debe promover el progreso económico y social, respetando los ecosistemas naturales y la calidad del medio ambiente.

De acuerdo con este criterio acuñado por las Naciones Unidas, la iluminación navideña de las ciudades no es sostenible. Es posible que los millones de luces instaladas por los gobiernos municipales incrementen la actividad económica como se pretende, pero también es seguro que lo hace sin respetar el medio ambiente y el bienestar de la población.

Demasiada luz nocturna

El exceso de luces de Navidad está relacionado con el problema de la contaminación lumínica. Ciudades ya de por sí muy contaminadas lumínicamente como Vigo o Madrid compiten por ver cuál de ellas llena más las calles de luces multicolores.

Calle en Gandia, Valencia.
Enric Marco, Author provided

Estas ciudades añaden miles de lúmenes de flujo luminoso al cielo nocturno, afectando a zonas medioambientalmente muy sensibles como el Parque Nacional de las Islas Atlánticas o el Parque Nacional de la Sierra de Guadarrama. Otras urbes como Murcia lanzan descaradamente haces de luz al cielo, incumpliendo la legalidad.

La verdadera sostenibilidad consistiría en no incrementar el desastre ambiental que ya producen con el exceso usual de luz de sus calles. Por ejemplo, por cada lumen de luz de Navidad instalado deberían rebajar un lumen de la luz de las calles. Así se ha hecho en la Grand Place de Bruselas, donde han apagado la luz de la plaza para admirar los edificios iluminados.

Afectados por la contaminación lumínica

Que la luz artificial nocturna contamina es ya una evidencia científica. La intrusión lumínica en los ecosistemas que necesitan la oscuridad para vivir afecta a anfibios, tortugas marinas, plancton, mamíferos, aves y, sobre todo, a insectos.

En el caso de las aves, es muy conocido el problema con las pardelas en Canarias que, en su primer vuelo, quedan desorientadas por el alumbrado de las ciudades costeras. O la catástrofe de las miles de aves migratorias atrapadas por los haces luminosos que conmemoran cada 11 de septiembre los atentados de Nueva York.

Árbol de luces de Navidad en el puerto de Barcelona.
Eric Sánchez Sánchez, Author provided

Pero la cuestión es todavía más sangrante en el caso de los insectos. Un estudio reciente denuncia la disminución de los polinizadores en todo el mundo, siendo la contaminación lumínica una de las causas.

En las zonas de plantas iluminadas por la noche, las visitas nocturnas de insectos polinizadores se redujeron en un 62 % en comparación con las áreas oscuras. Y ello ocurre cuando las zonas iluminadas crecen a nivel mundial un 2,2 % al año.

Hemos sido capaces de poner en peligro el futuro de nuestros alimentos y de las plantas silvestres en general. Los humanos, como seres vivos de actividad diurna, tampoco nos libramos de los efectos nocivos de la luz artificial nocturna sobre nuestro sistema circadiano. Esta inhibe la producción de melatonina.

La cronodisrupción producida está relacionada con problemas de insomnio, obesidad, depresión o diabetes. Las luces led blancas con un exceso de componente azul que se instalan en muchas ciudades y pueblos son los mayores disruptores del ciclo día/noche de nuestro organismo. Y, por cierto, la mayoría de luces de Navidad o son blancas o son directamente azules.

Luces navideñas y transición energética

Resulta increíble que en un contexto de cambio climático evidente, y cuando es necesaria una transición energética feroz –se deberán cerrar las minas de carbón y el petróleo se dejará en sus pozos, para usar únicamente recursos 100 % renovables–, las administraciones estén fomentando luces no necesarias que consumen recursos no renovables y que emiten CO₂.

Se nos dirá que los led instalados no suponen un gasto excesivo, ni consumen mucho. Incluso que son sostenibles. Pero es un mal ejemplo que se da a los ciudadanos: si este exceso es posible, cualquier extra también lo será. Demuestra que los dirigentes no están dispuestos a cambiar el modelo de producción y consumo actual para dejar un planeta habitable para nuestros hijos y nietos.

En definitiva, hay que elegir bando: si queremos estar al lado de los negacionistas con Trump o seguir lo que nos dice la ciencia y estar al lado de Greta Thunberg. La decisión es nuestra y el resultado de nuestras acciones se verá en pocos años.The Conversation

Enric Marco Soler, Técnico Superior de Astronomía, Universitat de València

Este artículo fue publicado originalmente en The Conversation. Lea el original.

Malgrat la calor, arriba l’hivern

Sembla que va ser ahir quan ens queixaven de les calorasses de l’estiu i avui ja entrem a l’hivern, amb unes temperatures altes a causa d’un vent de ponent inusual a aquestes dates de final d’any. El monstre del canvi climàtic avança sigil·lós i el fred normal de l’hivern ja és un record llunyà prop de les costes de la nostra Mediterrània.

Mentre nosaltres els humans, que tenim la responsabilitat de preservar el planeta en bones condicions per a les generacions futures, hem provocat aquest desgavell climàtic, la Terra continua girant al voltant del Sol, insensible als planys humans. Ella, tan tranquil·la, sap que continuarà el seu camí encara que l’espècie humana deixe d’estar present en la biodiversitat terrestre.

I avui precisament, el Sol se situarà a migdia en el punt més baix del seu camí celeste, l’eclíptica. Serem així al solstici d’hivern.

Aquest fet es veu molt bé a la imatge de portada. Mostra un experiment espectacular i ben delicat realitzat amb la tècnica de la solargrafia. Durant tot l’any 2014 es registrà el moviment del Sol al llarg dels dies sobre un únic registre fotogràfic. Mirant cap al sud, l’arc de llum del Sol més baix va ser produït el dia del solstici d’hivern, mentre que el darrer més alt va ser el registre del moviment solar del solstici d’estiu. Es veu clarament com en hivern el recorregut del Sol és més curt, és a dir la durada del dia és menor, mentre que en avançar l’any els arcs són cada vegada més llargs. El dia s’allarga en acostar-nos a l’estiu.

Vist des de l’hemisferi nord el Sol frega les muntanyes. Moltes poblacions situades a l’Ombria de les serralades, com ara Simat de Valldigna, en la Safor, ja noten que els arriba ben pocs rajos de Sol. Com veiem al gràfic adjunt, en el moviment aparent del Sol al voltant de la Terra, ara mateix el Sol es veu molt per baix del pla equatorial de la Terra. Els rajos solars són ben rasants a l’hemisferi nord, però ben als a l’hemisferi sud, on avui comença l’estiu. A Austràlia, amb unes temperatures que passen els més de més de 40 graus, sofreixen un veritable drama mediambiental. A l’estat de New South Wales (NSW) hi ha uns 100 incendis forestals actius, una crisi que ja dura uns mesos.

Ací, al nostre país, haurien de patir ara uns freds que ens feren treure els abrics més gruixuts, les bufandes i els guants. El fred faria més viu encara el cel nocturn i la meravellosa constel·lació d’Orió destacaria vivament al cel de Nadal. Ara, sembla que el fred no arriba com cal. Ja sé que el canvi climàtic no és la causa de totes les variacions climàtiques però aquesta bondat de l’oratge fa pensar.

Que passeu un bon canvi d’estació que ja ve Nadal i Cap d’any.

Imatges:
1.- Exposició del pas del Sol durant tot l’any 2014. El Sol deixa rastres en el seu aparent moviment d’est a oest. Imatge presa des de la tercera elevació de Sashegy, Buda, Budapest, Hongria. Elekes Andor. Wikipedia Commons.

3.- Inclinació dels raigs de Sol el dia del solstici d’hivern. De NASA -climate.