Pols d'estels

El bloc d'Enric Marco

Arxiu de la categoria: Exploració de l'espai

Artemis I de camí a la Lluna

0

Avui finalment a les 7:47 CET, al tercer intent, el programa Artemis aixeca el vol cap a la Lluna. La primera missió, Artemis I, després d’haver sofert diversos retards, és la primera de moltes missions futures en la que els humans tornarem a trepitjar la Lluna.

En aquest viatge de prova, sense tripulació, la nau Orió, ocupada només per maniquins plens de sensors, farà diverses voltes a la Lluna i retornarà a la Terra l’11 de desembre. Per arribar tan lluny està impulsat per l’immens coet Space Launch System (SLS), construït especialment per a aquest programa, capaç de pujar 30000 kg a l’espai profund. És l’equivalent modern del coet Saturn V que va permetre depositar dos humans a la superfície lunar el 20 de juliol de 1969.

Quines característiques té la Lluna per que siga un satèl·lit tan interessant per a les expedicions? Per què volem anar a la Lluna?

A l’alpinista George Mallory, el primer que pujà a l’Everest l’any 1921 li preguntaren:

Per què vols escalar l’Everest?
Per què està allí?

De la mateix manera podem respondre quan es pregunta pel motiu de arribar a la Lluna. És l’objecte celeste més pròxim i està allí esperant l’exploració.

La Lluna és l’objecte celeste més pròxim, sense moviment de plaques tectòniques, ni aigua, ni atmosfera. Per tant no ha evolucionat des que es formà. La seua exploració i el material que retornaren a la Terra els astronautes dels Apollo i les missions soviètiques i xineses han confirmat que la Lluna fou creada de manera ràpida, en només unes hores del xoc d’un planeta Teia contra la Terra primitiva.

Durant més de 50 anys d’exploració lunar, amb astronautes, amb rovers automàtics sobre la superfície (EEUU, URSS, Xina) o des de l’espai ( Clementine, Lunar Reconnaissance Orbiter (LRO), Chang’e 2, Chandrayaan-2 i tantes altres) han revelat el gran potencial de recursos minerals (heli 3, oxigen en la regolita lunar, aigua congelada en les zones polar lunars, metalls (Fe, Al, Ti, terres rares (Scandi, Itri, europi, necessàris per a la industria tecnològica, fabricació de xips, ) científics (astronomia).

Així que en el futur hi haurà mines en la Lluna. Les grans potències es freguen les mans per aquests recursos. Però quan això siga tecnològicament possible en 10 anys segurament hi haurà problemes:

1.- Les empreses privades no poden apropiar-se de terres lunars. Existeix normes com l’Acord de Governs de les Activitats dels Estats a la Lluna i Altres Cossos Celestes, també conegut com el Tractat de la Lluna. Tenen dret d’explotar-ne els recursos?
2.- Si s’engeguen grans projectes miners a la superfície lunar, l’aspecte de la Lluna vista des de la Terra pot canviar. Es crearan moviments com Salvem la Lluna.

Al llarg de la història s’han fet vora 200 expedicions no tripulades a la Lluna i tot i això, molts només recordem l’arribada d’Amstrong. Quina importància han tingut totes les que no recordem?

El 20 de juliol 1969 arriben els astronautes nord-americans Amstrong i Aldrin amb el modul Eagle del Apollo XI. Després vingueren més aterratges fins a l’Apollo XVII el 14 de desembre de 1972. En total, 24 astronautes feren el viatge de la Terra a la Lluna entre el 1968 i el 1972.
I quins experiments més importants deixaren en la superfície lunar?
Per analitzar els moviments interns lunar s’hi van instal·lar diversos sismògrafs. La xarxa sísmica dels Apollo ha detectat un gran nombre de terratrèmols de Lluna molt debils. L’alliberament d’energia sísmica total a la Lluna sembla ser unes 80 vegades menor que la de la Terra. Els terratrèmols de Lluna es concentren a gran profunditat, entre uns 600 i 1000 km.
També les missions Apollo deixaren diversos espills especial a la Lluna. Els dispars de raigs lasers des d’estacions en la Terra fins als espills lunars durant dècades ha permés descobrir que la Lluna s’allunya de la Tera uns 3.8 cm/any per conservació del moment angular del sistema Terra-Lluna.

Abans de les naus tripulades Apollo diverses naus automàtiques ja exploraven la Lluna. Les més importants són:

Luna 3 (1959) de l’URSS, la primera nau a fotografiar la cara oculta de la Lluna.

Luna 9 llençada per la Unió Soviètica el 1966. Va ser el primer objecte construït pels humans en posar-se suaument en un altre cos celeste.

La missió Surveyor de la NASA arribà a la superfície lunar el 1966. La missió principal era conèixer la textura de la superfície lunar tot pensant en les missions tripulades. Molts pensaven que el terra lunar es comportaria com una mena de talc i, per tant, el mòdul lunar i els astronautes s’hi enfonsarien. Per la nau demostrà que la pols lunar, ara anomenada regolita, és solida i és capaç de suportar el pes d’una nau i un astronauta. El Surveyor duia una càmera de televisió per veure la Lluna de ben prop.

La nau Clementine de la NASA, llençada el 1994 descobrí aigua en alguns cràters. La Lunar Prospector (NASA, 1999) en trobà en craters polars. Des del 2009 el Lunar Reconnaissance Orbiter (LRO) ha fet un mapa d’alta resolució de la Lluna i la prospecció dels recursos lunars. Ha aconseguit les primeres imatges dels equipaments deixats del programa Apollo així com les petjades dels astronautes.
La Xina ha entrat amb força en l’exploració lunar.  Des del 2007 ha enviat orbitadors i mòduls d’aterratge al nostre satèl·lit. L’any 2013 aterra la nau Chang’e 3 amb el ròver Yutu. L’any 2019 aconseguiren aterrar la nau Chang’e 4 amb el seu ròver Yutu-2 a la cara oculta de la Lluna.

Quins han estat els descobriments més rellevants que s’han aconseguit en l’exploració automàtica i tripulada de la Lluna?

Els principals descobriments que s’han aconseguit durant els 60 anys d’exploració lunar són:

Aigua en la Lluna. Descobriment de l’aigua a la Lluna, en gel i roques, a través de cràters enormes i planes lunars vastes
Pous lunars. La sonda LRO ha recollit les imatges més detallades fins ara d’almenys dos pous lunars, forats gegants a la superfície de la Lluna. Els científics creuen que aquests forats es formen quan el sostre d’un tub de lava subterrani s’enfonsa
Cara oculta de la Lluna. Sense quasi cràters, inexplorada. Llevat dels xinesos amb Chang’e 4.
Allunyament de la Lluna. 3.8 cm/any
La Lluna no és un objecte primordial. és un planeta terrestre evolucionat amb una zonificació interna semblant a la de la Terra.
La Lluna és antiga. Encara conserva una història primerenca (els primers mil milions d’anys) que ha de ser comuna a tots els planetes terrestres.
Les roques lunars més joves són pràcticament tan velles com les roques més antigues de la Terra. Els primers processos i esdeveniments que probablement van afectar ambdós cossos planetaris ara només es poden trobar a la Lluna.
La Lluna i la Terra estan relacionades genèticament. Es formaren a partir de diferents proporcions d’un dipòsit comú de materials.
La Lluna no té cap rastre de vida. No conté organismes vius, fòssils ni compostos orgànics natius.

Totes les roques de la Lluna es van originar a través de processos d’alta temperatura amb poca o cap implicació amb l’aigua. Són aproximadament divisibles en tres tipus: basalts, anortosites i bretxes.

Al principi de la seva història, la Lluna es va fondre a grans profunditats per formar un “oceà de magma”. Les terres altes lunars contenen les restes de les primeres roques de baixa densitat que van surar a la superfície de l’oceà de magma.

L’oceà de magma lunar va ser seguit per una sèrie d’impactes d’asteroides enormes que van crear conques que posteriorment es van omplir de colades de lava.

La Lluna és lleugerament asimètrica a granel, possiblement com a conseqüència de la seva evolució sota la influència gravitatòria de la Terra. La seva escorça és més gruixuda al costat més llunyà, mentre que la majoria de les conques volcàniques, i concentracions de massa inusuals, es troben al costat proper.

La superfície de la Lluna està coberta per un munt de runes de fragments de roca i pols, anomenat regolita lunar, que conté una història de radiació única del Sol que és important per entendre els canvis climàtics a la Terra.

Què ens queda per descobrir a la Lluna?

Tenint en compte el fet que l’únic contacte que hem tingut amb la Lluna són 6 missions Apol·lo tripulades molt breus i unes quantes sondes d’aterratge automàtiques, és notori que cal aprendre encara molt sobre el nostre satèl·lit natural. Pensar que ja està tot vist, seria tant com preguntar-se si després dels viatges de Colón quedava alguna cosa per descobrir a Amèrica.

Un dels misteris més grans hauria de ser la història detallada de la formació de la lluna. La hipòtesi de l’impacte té molt de suport i és probable que sigui correcta, però caldrà fer una pila d’estudis i extraure mostres de roques profundes si volem verificar-la.

Una altra gran pregunta hauria conèixer la quantitat de minerals i l’aigua accessibles que hi ha a la Lluna. La resposta a aquesta pregunta és vital per al futur assentament sobre la superfície lunar i l’expansió cap al sistema solar.

És viable l’explotació de viatges que podríem anomenar “comercials” a la Lluna?

Amb la tecnologia actual encara no. Ara en un futur pròxim (2040?) les empreses mineres de la Terra s’interessaran en l’explotació dels recursos minerals ja que podran traure un rendiment econòmic clar. Tanmateix la mineria lunar la faran segurament robots. Uns anys abans es crearan les primeres bases permanents lunars en les zones polars (2035).

A nivell turístic jo ho veig molt diferent. Viatjar a l’espai és una activitat perillosa i difícil per als humans. Cal tindre bona salut i estar entrenat. No tothom podrà anar-hi. Però la medicina espacial ha avançat molt i potser en 2050 puguen arribar els primers turistes sense massa problemes.

Hi ha tanta expectació amb aquesta possible nova arribada de la humanitat a la Lluna com la va haver als anys 60?

Per desgracia no tanta. La gent s’ha acostumat a que els viatges a l’espai siguen rutinaris. Però cal recordar que els viatges a l’estació espacial internacional, per exemple, son en orbita baixa a només uns 400 km d’alçada, i que en cas d’emergència poden retornar a la Terra en 6 h.
La tornada a la Lluna és un repte molt més difícil. Però és un objectiu que necessitem assolir si la humanitat vol explorar o colonitzar el sistema solar en un futur llunyà. Però en cas d’emergència la tornada són com a minin 3 dies.

Artemisa I s’ha enlairat avui.

Data de llançament: 16 de novembre de 2022
Durada de la missió: 25 dies, 11 hores i 36 minuts
Distància total recorreguda: 2,1 milions de quilòmetres
Velocitat de reentrada: 11 km/s (Mach 32)
Amaratge davant la costa de Califòrnia : 11 de desembre de 2022

Si tot funciona bé amb la missió actual de prova, la missió Artemisa II, que serà llançada el 2024, durà quatre astronautes a bord en un vol orbital al voltant de la Lluna. Artemisa III s’enlairarà el 2025 per aterrar a alguna regió del pol sud lunar, amb una dona astronauta i, segurament amb un altra persona de color.

Enviar robots a explorar és emocionant per a nosaltres, els friquis de l’exploració espacial, però enviar persones valentes en la punta d’un coet ple de combustible que pot explotar per xafar en persona la Lluna hauria de emocionar tothom. Són avantguarda de la humanitat que deixa el planeta mare per expandir-se per l’Univers.

Molta gent pensa que l’exploració espacial és un malbaratament i que s’hauria d’invertir en la millora del benestar de la humanitat

Aquesta idea del balafiament de l’exploració és una fal·làcia. Els que pensen així no coneixen extraordinari transvasament del coneixement humà. L’exploració espacial està a avantguarda de la tecnologia i moltes de les innovacions passen ràpidament a la societat. La NASA té milers de patents d’us lliure.
Alguns exemples de tecnologies espacials que han passat a la societat:

  • Teixits ignífugs del tratge dels bombers
  • La manta tèrmica, amb dues cares (platejada, daurada)
  • wifi, invent de la radioastronomia australiana
  • radar portàtil d’emergències
  • sistemes de purificació d’aigua
  • sabates esportives de competició
  • dentifrici sense escuma

Imatges:

1.- El coet SLS que porta la nau espacial Orion es llança en la prova de vol Artemis I, dimecres 16 de novembre de 2022. SLS i Orion es van llançar a les 7:47 am CET des de la plataforma de llançament 39B al Centre Espacial Kennedy a Florida. NASA/Bill Ingalls

Dimorphos canvia d’òrbita després de l’impacte

0

Doncs sí, podem estar contents. Els enginyers espacials són capaços de canviar el moviment d’un asteroide com s’acaba de demostrar després de l’impacte de la sonda DART contra Dimorphos. Aquesta ha estat la primera demostració a escala real de la tecnologia de desviació d’un asteroide dins del programa de defensa planetària que s’ha de posar en marxa ben aviat per protegir la civilització humana dels perills de l’espai. Dels perills terrestres causats per nosaltres ja ho mirem un altre dia.

El passat 27 de setembre DART xocà a uns 6 km/s contra Dimorphos, un petit cos tipus pila de runes en òrbita al voltant d’un asteroide més gros, Didymos. L’objectiu era tractar de modificar-li els paràmetres orbitals per tal de reduir el seu període orbital. Donat que l’impacte va ser en la direcció del moviment de l’asteroide, DART el va frenar una mica i, per tant, la velocitat va minvar i amb ella l’energia orbital. I si l’energia es redueix, l’òrbita al voltant del cos principal s’havia de fer més estreta. O dit d’altra manera, el període orbital s’havia de fer més curt.

La NASA afirmava que els efectes del xoc no se sabrien fins d’ací a uns mesos però els fets s’han accelerat i diversos observatoris en terra ja han confirmat l’escurçament del temps en que Dimorphos gira al voltant de Didymos.

El període orbital original de Dimorphos al voltant de Didymos era de 11 h i 55 minuts. Ara, observant la baixada de brillantor quan un asteroide passa per davant de l’altre s’ha pogut mesurar amb gran precisió el nou període orbital, d’11 h i 23 minuts. Per tant l’impacte ha reduït l’òrbita en 32 minuts.

Animació de com es veu l’òrbita de Dimorphos al voltant de Didymos des de la Terra, aproximadament una setmana després de l’impacte de DART. NASA/APL/UMD.

L’animació anterior mostra una visió molt ampliada de com es veu l’òrbita de Dimorphos al voltant de Didymos des de la Terra, aproximadament una setmana després de l’impacte de DART. En cada òrbita, Dimorphos passa a travès de l’ombra projectada per Didymos, i mitja òrbita més tard, ell mateix projecta breument una petita ombra sobre Didymos. En realitat, des de la Terra només podem veure la llum combinada dels dos asteroides amb els telescopis. El gràfic mostra com la brillantor total disminueix lleugerament quan un dels dos cossos és ombrejat per l’altre. Els astrònoms de DART han mesurat els intervals de temps entre les caigudes que marquen aquests esdeveniments d’eclipsi per tal de determinar el nou període de l’òrbita.

Corbes de llum del sistema d’asteroides Didymos/Dimorphos. NASA et al.

Les gràfiques anteriors ofereixen informació sobre les dades que l’equip de DART va utilitzar per determinar l’òrbita de Dimorphos després de l’impacte, concretament, petites reduccions de la brillantor a causa dels eclipsis mutus de Didymos i Dimorphos. Les noves observacions mostren que els eclipsis de Dimorphos es produeixen en moments diferents (fletxes verdes) als que ocorrerien si el període no hagués canviat (fletxes grises). La línia de temps superior mostra les observacions que l’equip de DART va utilitzar per determinar el nou període orbital de Dimorphos, amb dos conjunts d’aquestes dades (del 29 de setembre de 2022 i del 4 d’octubre de 2022) mostrats en detall. Les disminucions observades de la brillantor relativa per al conjunt de dades de cada nit corresponen als eclipsis de Dimorphos d’un nou període orbital d’11 hores i 23 minuts, cosa que demostra que el temps de l’eclipsi difereix del període previ a l’impacte d’11 hores i 55 minuts.

Imatges del NASA/Johns Hopkins APL/JPL/NASA JPL Goldstone Planetary Radar/National Science Foundation’s Green Bank Observatory

A més de ser observat des de telescopis terrestres també s’ha observat el sistema d’asteroides des de radiotelescopis. Alguns d’aquests, a més de rebre senyals en ràdio des de l’espai, també tenen la capacitat d’enviar fluxos d’ones de ràdio a cossos celestes del sistema solar i captar-ne les ones que s’hi reflecteixen. El radar planetari de Goldstone en California i l’observatori de Green Bank en West Virginia va seguir el sistema d’asteroides binari Didymos i Dimorphos a principis de mes. Com es pot veure en la imatge anterior, el cercle verd mostra la ubicació de l’asteroide Dimorphos, que orbita l’asteroide més gran, Didymos, vist ací com la zona brillant al mig de les imatges. El cercle blau mostra on hauria d’estar Dimorphos si la seua òrbita no hagués canviat a causa de l’impacte de DART. A l’esquerra es mostren observacions de Goldstone del 4 d’octubre de 2022; a la dreta es combinen les observacions de Goldstone i Green Bank del 9 d’octubre de 2022.

Més imatges i informació a:

NASA DART Imagery Shows Changed Orbit of Target Asteroid

Imatges:

1.- El satèl·lit LICIACube de l’Agència Espacial Italiana (ASI) va adquirir aquesta imatge just abans de l’aproximació més propera a l’asteroide Dimorphos, després que la missió DART impactara  el 26 de setembre de 2022. Didymos, l’asteroide principal, Dimorphos i el plomall de roques i pols que es despren de Dimorphos després de l’impacte de DART són clarament visibles. ASI/NASA

2.- Animació de com es veu l’òrbita de Dimorphos al voltant de Didymos des de la Terra, aproximadament una setmana després de l’impacte de DART. NASA/APL/UMD.

3.- Corbes de llum del sistema d’asteroides Didymos/Dimorphos. NASA/Johns Hopkins APL/Institut Astronòmic de l’Acadèmia de Ciències de la República Txeca/Observatori Lowell/JPL/Observatori Las Cumbres/Observatori Las Campanas/Observatori Europeu Austral Telescopi danès (1,54 m)/Universitat d’Edimburg/The Open University/Universidad Católica de la Santísima Concepción/Seoul National Observatory/Universidad de Antofagasta/Universität Hamburg/Northern Arizona University.

4.- Imatges del NASA/Johns Hopkins APL/JPL/NASA JPL Goldstone Planetary Radar/National Science Foundation’s Green Bank Observatory.

 

DART xoca contra Dimorphos

0
A l’esquerra l’ultima imatge de la misión DART abans de l’impacte contra Dimorphos. A la dreta l’impacte observat des de els telescopis espacials Hubble i JWT.

Després de 10 mesos volant per l’espai, la missió DART (Double Asteroid Redirection Test), la primera demostració tecnològica de defensa del planeta, va impactar amb èxit contra l’asteroide objectiu la matinada del 27 de setembre del 2022 a la 1:14.  Fou el primer intent de la NASA de desplaçar un asteroide a l’espai. El control de missió del Laboratori de Física Aplicada Johns Hopkins enviava directament les imatges captades cada minut per la nau de manera que es va poder veure, pràcticament en directe, només amb un retràs de 45 segons, l’arribada de DART al sistema d’asteroides, el sobrevol de Didymos i l’aproximació a Dimorphos. Un viatge espacial en directe que meravellà a tots els fans de l’exploració espacial. Des de l’arribada de la nau Rosetta al cometa 67P/Chuyrumov-Gerasimenko que no s’havia vist tanta expectació.

I quan DART va deixar enrere l’asteroide Didymos, veiérem finalment la superfície de l’asteroide objectiu de ben prop. Va ser aleshores quan  veierem que la superfície estava coberta totalment de roques i, per tant, se’l podia classificar com un asteroide tipus munt de runes, com ho són els asteroides Ryugu i Bennu. Sembla que aquest tipus d’asteroide és més comú del que semblava.

Ryugu i Bennu no son cossos sòlids, sinó que en realitat són muntons de runes, és a dir, acumulacions de roques de grandàries diferents. Aquest fet pot causar problemes a l’efecte d’un impacte cinètic com aquest ja que l’energia del xoc pot servir per trencar el cos i no per frenar-lo i desviar-lo de la seua òrbita original.

DART xocà contra l’asteroide Dimorphos, que es troba en òrbita al voltant d’un asteroide major anomenat Didymos. Un segon abans de l’impacte envià la darrera imatge quan estava a un 6 km de la superfície. Ara els investigadors observaran Dimorphos usant telescopis instal·lats a terra per confirmar que l’impacte de DART ha canviat l’òrbita de l’asteroide al voltant de Didymos. Els investigadors esperen que l’impacte escurce l’òrbita de Dimorphos en un 1%, o uns 10 minuts del període orbital.

El telescopi SOAR a Xile capturà els més de 10.000 quilòmetres de material expulsat des de Dimorphos després que DART xocara. CTIO/NOIRLab/SOAR/NSF/AURA/T. Kareta (Observatori Lowell), M. Knight (Acadèmia Naval dels EUA).

Quinze dies abans de l’impacte, un cubesat de l’Agència Espacial italiana, LICIACube,  se separà de DART per captar imatges de la col·lisió i del núvol de pols, runes i gas expulsats des de la superfície de l’asteroide. Com que no disposa d’una antena gran, les imatges que ha pres seran retransmeses a la Terra d’una en una durant les properes setmanes.

Passat un dies de l’impacte, els telescopis en terra observen tres cues de pols que ixen del sistema Didymos-Dimorphos. Això resulta ben estrany ja que s’esperava unes ejeccions de material que durarien hores. Seria Dimorphos un antic nucli de cometa capturat per Didymos i que l’impacte ha reactivat. De vegades la frontera de classificació entre asteroide i cometa és ben difusa.

D’ací a quatre anys, la missió europea Hera realitzarà sondejos detallats de Dimorphos i Didymos, amb un interès particular al cràter creat per la col·lisió de DART i farà una mesura precisa de l’òrbita i de la massa de Dimorphos. 

Font: https://www.nasa.gov/press-release/nasa-s-dart-mission-hits-asteroid-in-first-ever-planetary-defense-test/

Més informació:

¿Se puede desviar la órbita de un asteroide de tipo pila de escombros con un proyectil? Daniel Marín, 1 juliol 2022.

Preparats per a la primera prova de defensa planetària

0

La nit del dilluns 26 al dimarts 27 de setembre, a les 1:14, DART (Prova de Redireccionament de l’Asteroide Doble per les inicials en anglès), la missió de la NASA i del laboratori Johns Hopkins APL impactarà contra l’asteroide Dimorphos, en la que serà la primera missió de prova per construir el futur escut de defensa planetària. En l’equip científic d’aquesta missió participa l’astrofísic Josep Maria Trigo-Rodríguez, de l’Institut de Ciències de l’Espai (ICE-CSIC) i membre de l’Institut d’Estudis Espacials de Catalunya.

Lluny de la imatge idíl·lica d’un sistema solar harmònic i d’una Terra segura, l’entorn del nostre planeta està ple de milers d’asteroides que molt sovint es creuen en el nostre camí. De moment, des que els observem, quasi sempre han passat més enllà de l’òrbita de la Lluna, a milions de quilòmetres de nosaltres. D’altres, tanmateix, s’han aproximat molt més i els hem trobat a distàncies més pròximes a la de la Lluna. Aquests asteroides formen part del grup d’Objectes potencialment perillosos (Potentially Hazardous Object o PHO en anglès), amb òrbites que travessen la de la Terra a menys de 0,05 ua i que tindrien una mida prou grossa (major de 150 m) com per provocar danys globals en cas d’impacte.

La probabilitat que impacte un d’aquests cossos no és menyspreable. Es considera que cada 10000 anys en podria caure un d’aquesta mida. De fet, al llarg de la història del planeta ja n’han caigut uns quants amb efectes devastadors, el més conegut dels quals és el que causà el cràter de Chicxulub al Iucatan i acabà amb els dinosaures. Més prop en el temps tenim el casos de l’asteroide de Txeliàbinsk i el fenomen de Tungunska.

Esquema de l’impacte sobre l’asteroide Dimorphos. NASA

És per tot això que cal posar-se ja a la feina per pensar, dissenyar i provar mecanismes per evitar els possibles futurs impactes sobre la Terra, i que poden acabar en poques hores amb la civilització humana. Les agències espacials ja s’ho han pres seriosament i s’han posat, o posaran pròximament en marxa, els anomenats programes de defensa planetària. La NASA i la ESA provaran dilluns a la matinada amb la missió DART la tecnologia per desviar un asteroide. La Xina diu que començarà a treballar-hi el 2025.

La missió DART isqué de la Terra el 24 de novembre de 2021 en direcció al sistema doble (65803) Didymos. L’objectiu era arribar al sistema format per Didymos, un asteroide de 780 metres i la petita lluna Dimorphos d’uns 160 m de diàmetre que l’orbita. I, ara, a poques hores de l’arribada, la nau de de 550 kg ja es prepara per al xoc, a una velocitat d’uns 6,6 km/s, contra el seu objectiu final, la petita lluna.

La missió tracta de veure com l’impacte és capaç o no de canviar, encara que siga una mica, els paràmetres orbitals de la lluna. No hi ha risc que aquesta s’escape del sistema ja que segur que romandrà lligada al cos principal però amb una altra òrbita més menuda.

Efecte de l’impacte de DART sobre l’òrbita de Dimorphos durant el desplegament del LICIACube italià. NASA/Johns Hopkins APL

L’òrbita de Didymos al voltant del Sol és lleugerament inclinada amb respecte al pla dels planetes, per sobre dels 3 graus. El seu període orbital és de 2.11 anys. Per tant es troba entre la Terra i Mart i, ara mateix, es troba a uns 11 milions de quilòmetres de nosaltres.

Didymos és classificat com a membre del grup d’asteroides Amor. Gira ràpidament cada 2.26 hores. La lluna Dimorphos gira al seu voltant una vegada cada 11.9 hores. L’asteroide major i la seua lluna estan separats per un quilòmetre aproximadament.

Com que DART impactarà en contra de la direcció de moviment de Dimorphos, l’impulsarà, encara que siga mínimament, en direcció contraria amb la qual cosa la Lluna perdrà velocitat i energia i, necessàriament, li farà adoptar una òrbita més pròxima a l’asteroide principal Didymos.

Per observar l’impacte i els efectes en la lluna, la missió disposa de diversos instruments. Per veure el sistema d’asteroides de prop amb imatges en directe s’usarà l’únic instrument a bord de DART,  DRACO (Didymos Reconnaissance and Asteroid Camera for Optical Navigation). DRACO és una càmera d’alta resolució basada en l’instrument LORRI de New Horizons. DRACO ajudarà DART a navegar cap al sistema Didymos i, en els darrers minuts, enviarà imatges a la Terra a una velocitat d’una imatge per segon, cosa que permetrà a l’equip de DART mesurar la mida i la forma de la lluna per determinar el lloc de l’impacte.

Aquesta imatge de la llum de l’asteroide Didymos i la seua lluna Dimorphos és una composició de 243 imatges preses per la càmera DRACO el 27 de juliol de 2022 des de 32 milions de km de distància. NASA JPL DART Navigation Team.

Però DART també té un passatger: una petita nau espacial aportada per l’Agència Espacial Italiana (ASI). El LICIACube  (Light Italian CubeSat for Imaging of Asteroids), de 14 kg i tan gros com una caixa de sabates, a hores d’ara ja s’haurà separarat de DART. LICIACube capturarà imatges de l’impacte i el material expulsat des de la lluna. Tractarà de fotografiar el cràter causat per l’impacte, tot i que els gasos i pols poden entorpir-ho. I ens mostrà la part posterior de la lluna, donat que, llavors, DRACO serà ja un munt de ferralla enterrat en Dimorphos.

Aquesta és la primera missió de prova de defensa planetària dissenyada per a canviar el curs d’un asteroide. En l’equip científic d’aquesta missió participa l’astrofísic Josep Maria Trigo-Rodríguez, de l’Institut de Ciències de l’Espai (ICE-CSIC) i membre de l’Institut d’Estudis Espacials de Catalunya.

Aquesta missió busca demostrar la utilitat del mètode d’impacte cinètic per a desviar asteroides potencialment perillosos. DART realitzarà un experiment per a canviar la trajectòria i la velocitat d’un asteroide en l’espai emprant la pròpia sonda per a l’impacte cinètic, sense càrrega explosiva. D’aquesta manera, la NASA pretén posar a prova les capacitats de defensa planetària en cas que fos necessari desviar un asteroide en curs de col·lisió amb la Terra en el futur.

Amb la missió DART pretenem comprendre millor els aspectes claus que influeixen en la transferència de moment cinètic per un projectil sense càrrega explosiva. És un experiment físic amb el qual desitgem conèixer l’eficiència amb què un projectil kamikaze excava un cràter en un asteroide, llançant els materials de la superfície de l’asteroide en direcció oposada al projectil”, assegura l’astrofísic del CSIC Josep M. Trigo-Rodríguez. “Com més gran siga l’eficiència d’aquest procés, major serà el desviament de l’asteroide, però hi ha un factor multiplicador en el procés d’excavació per impacte que cal comprendre millor a partir d’aquest experiment”, afegeix.

El grup de recerca de Meteorits, Cossos Menors i Ciències Planetàries de l’ICE-CSIC compta amb personal expert en les propietats físico-químiques dels materials que conformen les superfícies d’asteroides i cometes i ha realitzat múltiples contribucions en aquest àmbit. “Des de l’ICE-CSIC i el IEEC, hem realitzat una sèrie d’experiments per a conèixer millor les propietats mecàniques de la regolita i els processos de xoc en asteroides per a ajudar en la comprensió de la seua naturalesa i mineralogia”, afirma Trigo. “Els asteroides posseeixen una estructura diversa que és el resultat del continu bombardeig de projectils des de la seua formació. Això fa que desviar-los constituesca un repte científico-tecnològic de primera magnitud”, assenyala.

Missió DART. Johns Hopkins APL

Cal tenir en compte que la missió Hera (ESA) seguirà a DART i, per tant, cal determinar amb precisió el punt d’impacte i les conseqüències de l’excavació del cràter sobre el sistema de l’asteroide (65803) Didymos”, assenyala Trigo que fa més d’una dècada que està involucrat en les diferents propostes que han precedit a la missió DART així com en la missió Hera de l’Agència Espacial Europea (ETA).

Hera visitarà l’asteroide binari Didymos a partir de 2024 després de l’impacte de la missió DART de la NASA contra el seu satèl·lit Dimorphos. Tots dos asteroides seran cartografiats en alta resolució. També es planeja emprar tecnologies CubeSat per a recaptar informació complementària d’enorme interès amb la finalitat de pal·liar futures trobades amb asteroides.

Més informació:

Missió DART. The Johns Hopkins University Applied Physics Laboratory LLC.
Didymos i Dimorphos i la missió DART. NASA.
El CSIC participa en la primera misión para desviar la trayectoria de un asteroide potencialmente peligroso.

Observació en directe 27 setembre (hora local Central European Time CET):

  • 00:00 – La cobertura en directe (en anglès) de l’impacte de DART amb l’asteroide Dimorphos s’emetrà en la televisió de la NASA y en la pàgina web de l’agència. El públic també ho podrà seguir en directe en els xarxes socials de la NASA en anglès en FacebookTwitter, y YouTube.
  • 1:14  – Impacte cinètic de DART contra l’asteroide Dimorphos.

Imatges:

1.-Il·lustració de la nau espacial DART de la NASA i del LICIACube de l’Agència Espacial Italiana abans de l’impacte amb el sistema binari Didymos. NASA/Laboratori de Física Aplicada de Johns Hopkins APL/Steve Gribben.

Pròxima parada: arribada a la Lluna

0

El llançament d’Artemis 1, la missió de prova que ha d’anar a la Lluna, ha estat finalment ajornada fins, com a mínim, el mes d’octubre. És la primera d’una sèrie de llançaments amb el propòsit de posar novament astronautes a la superfície del nostre satèl·lit cap el 2025. Aquesta vegada els humans que hi arribaran seran més diversos ja que hi haurà com a mínim una dona i una persona no blanca.

Per parlar del per qué d’aquesta missió, qué s’espera trobar a la Lluna, quins descobriments s’han fet des que els últims humans l’abandonaren l’any 1972 i quin serà el futur de l’exploració lunar, Susanna Lliberós i el seu equip de Pròxima parada de la Ràdio d’À Punt han parlat amb David Barrado, professor d’investigació al Centre d’Astrobiologia, Fernando Ballesteros, cap d’instrumentació de l’Observatori Astronòmic de la Universitat de València i Enric Marco, Tècnic Superior d’Astronomia del Departament d’Astronomia i Astrofísica de la Universitat de València. Podeu escoltar l’entrevista a l’enllaç d’ací baix.

06.09.2022 | Pròxima parada | Quarta hora | Nova arribada de l’ésser humà a la Lluna 50 anys després (a partir del minut 30)

https://www.apuntmedia.es/programes/proxima-parada/complets/06-09-2022-proxima-parada-quarta-hora_135_1542027.html

Imatge:

Artemis 1 a la plataforma de llançament 39B. El coet del sistema de llançament espacial (SLS) de la NASA amb la nau espacial Orion a bord es veu dalt d’un llançador mòbil al complex de llançament 39B, dijous 21 d’abril de 2022, al Centre Espacial Kennedy de la NASA a Florida. NASA/Aubrey Gemignani (CC BY-NC-ND 2.0).

Europa no anirà a Mart

0

Era d’esperar. La missió ExoMars 2022 que havia d’enviar-se a Mart el setembre pròxim es queda a terra de manera indefinida. La invasió d’Ucraïna ha trencat la majoria de ponts de col·laboració científica i tècnica entre Rússia i Occident i l’exploració espacial també n’ha quedat afectada.

2022 és any d’oposició marciana i, per aprofitar la menor distància al planeta, l’Agència Espacial Europea (ESA) en col·laboració amb Roscosmos, l’agència russa, hauria d’enviar-hi en setembre ExoMars 2022.   Aquesta missió consta del mòdul de descens rus Kazachok que baixaria a la superfície marciana amb l’ús de retrocoets (com va fer la nau xinesa Zhurong l’any passat). Kazachok, a més de ser una estació científica fixa, portaria a bord el robot explorador Rosalind Franklin, en honor a la científica que obtingué la primera imatge de l’estructura del DNA, construït per l’Agència Espacial Europea (ESA), la missió principal del qual seria la cerca de proves de vida passada o present en Mart.

Ahir (17 de març) el Consell general de l’ESA format pels estats membres acordà de manera unànime respecte a la missió ExoMars 2022

  • Reconèixer la impossibilitat actual de dur a terme la cooperació en curs amb Roscosmos per a la missió del robot d’ExoMars amb un llançament el 2022 i ordenar al director general de l’ESA que es prenguen les mesures oportunes per suspendre les activitats de cooperació en conseqüència;
  • Autoritzar el director general de l’ESA a dur a terme un estudi industrial ràpid per definir millor les opcions disponibles per a implementar la missió del robot d’ExoMars.

La missió ExoMars ha tingut problemes des del principi. Començà essent una col·laboració amb la NASA però l’any 2012 aquesta va posar fi a la seua participació a causa de les retallades pressupostàries per tal de pagar l’excés de despeses del Telescopi espacial James Webb.

El 14 de març de 2013, representants de l’ESA i l’agència espacial russa (Roscosmos), varen signar un acord en el qual Rússia es convertia en un soci de ple dret. Roscosmos subministraria els vehicles de llançament Protó amb etapes superiors Briz-M i serveis de llançament, així com un mòdul d’entrada, descens i aterratge addicional portant a bord un robot explorador.  Constaria de dues missions: Exomars 2016, que duria l’orbitador Trace Gas Orbiter (TGO) i el modul de demostració de descens i aterratge Schiaparelli i Exomars 2018 que baixaria el robot Rosalind Franklin. Tanmateix les finestres de llançament del 2018 i del 2020 no es pogueren aprofitar per diversos problemes tècnics amb els paracaigudes que havien de dipositar suaument Rosalind en terra marciana. Tothom esperava que enguany, resolts els problemes i passada la pandèmia, la col·laboració ESA-Roscosmos duria la tecnologia europea i russa per primera vegada a Mart.

Ara la guerra a Ucraïna ho ha llençat tot per l’aire. De moment Roscosmos, vista la negativa de l’ESA a col·laborar, ja ha anunciat que el coet Proton-M/Briz-M reservat que havia d’enlairar ExoMars2022 des del Cosmòdrom de Baikonur al Kazakhstan s’utilitzarà en alguna altra missió. De tota manera el director de Roscosmos, Dimitri Rogozin tampoc va deixar marge per mantenir les relacions, ja que va ordenar el passat 26 de febrer el final de la col·laboració amb els llançaments espacials a la base europea de Kourou, a la Guaiana francesa, i retirà tot el seu personal. Els ànims entre les dues agències espacials no passen pel seu millor moment.

Ara el director general de l’ESA, Josef Aschbacher, té una feina feixuga gairebé impossible. Buscar un nou coet per enviar el robot Rosalind Franklin a Mart i, més difícil encara, trobar una etapa de descens que la deposite suaument en la superfície.

El repte de salvar ExoMars 2022 és pràcticament impossible ja que  Roscosmos col·labora no només amb el coet llançador i l’etapa de descens. També disposa de dos instruments en el robot Rosalind Franklin (ADRON-RM i ISIM) i, a més a més, ha instal·lat una unitat de calor de radioisòtops amb plutoni 238 per a escalfar el ròver en les nits marcianes.

En teoria, es podria buscar un nou llançador, com per exemple un Ariane 6, llançar la missió des del Port Espacial Europeu a Kourou i utilitzar el modul de descens Kazachok sense assistència tècnica russa. Però tanta incertesa fa impossible que la missió s’enlaire en setembre d’enguany aprofitant la màxima aproximació de Mart. Caldria ja esperar les noves finestres de llançament del 2024 o millor encara el 2026.

Realment, tal com pensa Daniel Marin, expert en astronàutica, l’única solució realista per salvar la missió seria esperar que les relacions entre Rússia i Europa milloren i enlairar ExoMars amb un coet Proton-M/Briz-M tal com estava previst. I si això no s’aconsegueix, potser ExoMars es quede a terra per sempre. Seria una veritable llàstima. Tant Europa com Rússia no han aterrat mai a Mart i tots dos hi perden si no s’hi avenen en algun moment del futur.

Més informació:
Adiós a ExoMars 2022. ¿Veremos algún día el rover Rosalind Franklin en Marte? Eureka, Daniel Marin, 17 març 2022.

El instrumento español para buscar vida en Marte se queda en tierra por la guerra en Ucrania, Mónica G. Salomone. SINC. 18 març 2022.

Images:
1. El robot Rosalind Franklin a Mart i al fons el mòdul Kazachok. Recreació. ESA
2. Modul de descens rus Kazachok a Mart portant a bord el robot Rosalind Franklin. Recreació. ESA

Com queda la col·laboració espacial amb Rússia?

0

A hores d’ara la invasió d’Ucraïna per part de les forces armades russes continua endavant. Tot de sancions s’han activat i Rússia ha estat expulsada temporalment del Festival d’Eurovisió, del Consell d’Europa i d’altres organismes internacionals.

I vist això, com queda la col·laboració espacial de la NASA i de l’Agència Espacial Europea (ESA) amb Rússia?

Actualment set astronautes de la NASA, l’ESA i l’Agència Espacial Russa, Roscosmos, es troben a bord de l’Estació Espacial Internacional (ISS, de les inicials en anglès). Els astronautes de la NASA Raja Chari, Kayla Barron, Thomas MarshburnMark Vande Hei, l’astronauta de l’ESA Matthias Maurer i els cosmonautes de Roscosmos Anton Shkaplerov i Pyotr Dubrov treballen conjuntament i pacíficament mentre els seus dirigents es barallen a terra.

El treball col·laboratiu dalt de l’Estació continua com estava previst segons es desprén de la informació de la NASA. Per a dimarts que ve hi ha prevista una eixida extravehicular (passeig espacial) i el començament d’unes recerques sobre càncer.  A més a més és previst que una nau russa Soyuz faça aterrar l’astronauta de la NASA Mark Vande Hei  el 30 de març a Sibèria.

Si bé allà dalt tot va bé, no tot és igual a les seus de les agències espacials. Malgrat que l’administrador de la NASA Bill Nelson i el director general de l’ESA, Josef Aschbacher han declarat que la col·laboració amb Roscosmos no ha de sofrir cap entrebanc i hauria de continuar igual, no pensa el mateix el director de Roscosmos Dimitri Rogozin. Amb unes dures declaracions ha avisat de les conseqüències del boicot a l’alta tecnologia espacial russa que ha insinuat Joe Biden, el president dels EEUU:

Si EE UU bloqueja la cooperació amb nosaltres, qui salvarà la ISS d’una eixida d’òrbita descontrolada o una caiguda sobre EE UU o Europa?

I és que les naus Soyuz russes que hi arriben eleven periòdicament l’Estació ja que aquesta perd altura pel fregament atmosfèric. Sense aquesta ajuda l’Estació cauria descontrolada en pocs anys. A més, fa uns mesos, Roscosmos amenaçà de deixar d’invertir en la ISS el 2025 si no s’alçaven les sancions (per l’annexió de Crimea) que li impedeixen adquirir components electrònics per al programa espacial, mentre que la NASA la voldria conservar almenys fins el 2030.

Avui mateix Rogozin, en resposta a les noves sancions europees, ha ordenat el final de la col·laboració amb els llançaments espacials a la base europea de Kourou, a la Guaiana francesa. De manera que unes 80 persones, tot l’equip tècnic de Roscosmos que s’hi troba allí, abandonarà en les pròximes hores la base espacial.

Rogozin també ha manifestat que, amb les sancions dels EEUU és impossible la col·laboració amb la NASA per a construir la missió Venera-D que hauria de ser llençada el 2029. Es proposa que Roscosmos assumesca tota la missió o que es demane la col·laboració de la Xina.

2022 és any d’oposició marciana i, per aprofitar la menor distància al planeta, l’Agència Espacial Europea (ESA), en col·laboració amb Roskosmos, l’agència russa, hauria d’enviar en setembre la missió ExoMars  que, una vegada arribe al planeta desplegà una estació fixa, Kazachok, i un explorador mòbil en la superfície. El robot explorador, anomenat Rosalind Franklin, en honor a la científica que obtingué la primera imatge de l’estructura del DNA, buscarà proves de vida passada o present en Mart. En principi sembla que, de moment no hi haurà problemes amb la missió ja que tots els components estan construïts i provats. El llançador serà un coet Proton-M/Briz-M que deixarà la Terra des del Cosmòdrom rus de Baikonur.

Actualització 1 de març 2022. Comunicat de l’ESA: Pel que fa a la continuació del programa ExoMars, les sancions i el context més ampli fan que un llançament el 2022 sigui molt poc probable.

Molts anys de col·laboració científica tècnica i científica se’n van per l’aire per la invasió d’Ucraïna. La desconfiança dels dirigents mundials ha estroncat projectes conjunts i l’intercanvi d’informació científica que ens duien a un món millor. Encara que els lligams personals entre el personal de les agències espacials continuaran, els dirigents posaran molts entrebancs a la lliure circulació de les idees. I un món amb gran reptes ambientals i sanitaris no s’ho pot permetre.

Actualització 1 de març 2022

Ahir es reuniren els membres de l’Agència Espacial Europea i firmaren el següent document conjunt:

Deplorem les víctimes humanes i les tràgiques conseqüències de la guerra a Ucraïna. Estem donant prioritat absoluta a la presa de decisions adequades, no només pel bé de la nostra plantilla implicada en els programes, sinó pel ple respecte dels nostres valors europeus, que sempre han modelat fonamentalment el nostre enfocament de la cooperació internacional.

L’ESA és una organització intergovernamental governada pels seus 22 estats membres i durant les últimes dècades hem creat una sòlida xarxa de cooperació internacional, que serveix a la comunitat espacial europea i mundial a través dels seus programes de gran èxit.

Estem aplicant plenament les sancions imposades a Rússia pels nostres Estats membres. Estem avaluant les conseqüències de cadascun dels nostres programes en curs realitzats en cooperació amb l’agència espacial estatal russa Roscosmos i alineem les nostres decisions amb les decisions dels nostres Estats membres en estreta coordinació amb socis industrials i internacionals (en particular amb la NASA sobre l’Estació Espacial Internacional).

Pel que fa a la campanya de llançament dels coets Soyuz des del port espacial europeu de Kourou, prenem nota de la decisió de Roscosmos de retirar la seua plantilla de Kourou. En conseqüència, avaluarem per a cada càrrega útil institucional europea sota la nostra responsabilitat el servei de llançament adequat basat sobretot en els sistemes de llançament en funcionament actualment i els pròxims llançadors Vega-C i Ariane 6.

Pel que fa a la continuació del programa ExoMars, les sancions i el context més ampli fan que un llançament el 2022 sigui molt poc probable. El director general de l’ESA analitzarà totes les opcions i prepararà una decisió formal sobre el camí a seguir pels estats membres de l’ESA.

L’ESA continua supervisant la situació en estret contacte amb els seus estats membres.

Més informació:
Agencia Espacial Europea publica actualización sobre la participación de Rusia en la EEI y las misiones a Marte, divendres 25 de febrer 2022.
Station Gears Up for Spacewalks While Conducting Cancer Research, 24 febrer 2022
“Si EE UU bloquea la cooperación con nosotros, ¿quién salvará a la ISS de una caída sobre Europa?” 25 febrer 2022

Imatge:
La nau russa Soyuz MS-18 es mostra acoblada al mòdul Rassvet de l’Estació Espacial Internacional mentre el complex orbital vola a 426 km per sobre del Canadà a prop de Calgary, Alberta. 14 d’abril de 2021.

“50 anys a la Lluna” a Benetússer

0

Ja fa més de mig segle que els humans varen xafar la Lluna. Després de l’aturada de xarrades presencials a causa de la pandèmia, he tornat a explicar les històries, anècdotes i actes de valentia que van permetre fer arribar una nau espacial amb humans a la Lluna i retornar-los sans i estalvis a la Terra.

Hi ha però aspectes lamentables com ara el vet explicit a la incorporació d’un grup de dones ja preparades en la cursa cap a la Lluna o la participació d’un antic nazi com a cap del projecte.

Finalment, com una part més de la guerra freda, moltes vegades a pocs minuts de prémer el botó nuclear, els astronautes nord-americans del programa Apol·lo aconseguiren la fita anunciada i promesa pel president John F. Kennedy de dipositar un artefacte comandat per humans en la Lluna, per davant dels soviètics.

La xarrada va ser el passat 3 de novembre al Saló d’Actes de l’ajuntament de Benetússer, l’Horta Sud. i estava dirigida fonamentalment als meus benvolguts alumnes d’Unisocietat encara que també oberta a tothom.

Els llibres recomanats per aprofundir en la xarrada de l’arribada a la Lluna:

100 Històries de l’aventura espacial
Èxits i tragèdies de l’espècie que somiava explorar el més enllà.

Joan Anton Català Amigó

Cossetània Edicions, 2020

El sorprenent viatge de l’Apol·lo XI

Mónica Pallardó

Samaruc Editorial, 2020

La xarrada es va gravar. Així que si us interessa ací baix la pot seguir.

Una selfie des de Mart

2
Publicat el 18 de juny de 2021

Fa temps que no sabíem res de la missió marciana xinesa. El passat 14/15 de maig el ròver Zhurong arribà a Utopia Planitia i pocs dies després baixà del mòdul de descens i començà a rodar per posar en marxa el seu programa científic. Des d’aleshores les autoritats de l’Agència Nacional de l’Espai xinesa (CNSA) no havien revelat res més de la missió. Un fet que feia pensar a alguns que potser el ròver havia sofert algun problema de funcionament i que fins que no se solucionara no es publicaria cap més fotografia. Acostumats a la política de finestres obertes, peti qui peti, de la NASA, la política de les autoritats xineses d’ocultació sistemàtica de les fites aconseguides no ens acaba d’agradar.

Però sembla que no hi havia cap problema. Finalment el dia 11 de juny la CNSA publicà imatges de la missió que confirmava la bona salut del ròver. Entre les diverses imatges lliurades als mitjans de comunicació destaca la selfie en la que es presenta en primer pla Zhurong i al seu darrere, a uns 10 metres del ròver, la plataforma de descens. Una imatge, que pel color, la textura, la proximitat dels objectes no ha deixat ningú indiferent i que, de segur, passarà als anals de l’exploració espacial. Els xinesos, quan volen, també saben posar-li èpica a l’exploració espacial.

Però com s’ha fet la fotografia? Si  a la zona no hi ha cap artefacte humà més present, com ha estat possible aconseguir tal meravella? El fet és que la imatge ha estat feta per una petita càmera controlada per wifi que soltà el ròver unes hores abans des de la seua panxa. Posar la càmera en el punt just per a que Zhurong i la plataforma queden ben centrats no haurà estat fàcil.

I que veiem en la fotografia? En primer pla hi ha algunes petites roques en un terreny extremadament pla. Més enllà veiem el ròver Zhurong amb el seu cap mòbil que conté les dues càmeres NaTeCam a color a cada costat per a la navegació com si foren dos ulls i la càmera multiespectral MSCam, en el centre, com un puntet. Al dos costats els dos immensos panells solars desplegats. Les dues “antenes” són les antenes del georadar que explorarà pròximament l’interior marcià. Al costat del pal que sosté les càmeres es troba l’antena UHF de baix guany (el cilindre roig) mentre que al seu darrere, mig amagada, veiem l’antena blanca d’alt guany.

A la dreta del ròver, i separat uns 10 metres d’ell, es troba el mòdul de descens. I presidint l’escena la gran bandera xinesa desplegada, de color vermell, que simbolitza la Revolució, amb cinc estrelles grogues de 5 puntes que simbolitzen, al seu torn, la unitat del poble revolucionari sota la direcció del Partit Comunista de la Xina que es representat per l’estrella gran. Sembla que és la primera bandera desplegada en la superfície de Mart. El ròver també té la seua petita bandera que veureu com un petit rectangle roig.

I per damunt de tot, el cel groc-rogenc ple de pols en suspensió.

El mòdul de descens vist des del ròver Zhurong. Destaca en primer pla la bandera xinesa. A la dreta s’observa els solcs fets per les rodes del ròver per girar 90º. CNSA

També s’han presentat altres fotografies. Una d’elles mostra el mòdul de descens. El ròver quan es va situar a l’esquerra d’aquest per fer-se el selfie anterior el va fotografiar. Destaca en primer pla la bandera xinesa. A la dreta s’observa la rampa per on baixà Zhurong i els solcs fets per les rodes del ròver per girar 90º.

Imatge de la superfície marciana obtinguda per la càmera multiespectal situada al “cap” de Zhurong. Destaca l’absència de roques i relleu en aquesta zona extremadament plana d’Utopia Planitia. CNSA.

El lloc on aterrà el maig passat la missió xinesa es va elegir per ser molt plana i de veritat que ho és. Segons els indicis científics, Utopia Planitia és el registre fòssil d’un antic oceà marcià que ocupava tot el nord del planeta. Quilòmetres i quilòmetres d’arena i roques que mereixen exploració. De fet la missió de la NASA Viking 2 (1977) i Curiosity (2013) es troben també en aquesta zona.

També hem pogut admirar la primera imatge panoràmica feta des del ròver quan encara estava sobre el mòdul de descens. Ampliant-ho molt (i amb una major resolució) es pot veure l’escut tèrmic i el paracaigudes sobre els logos de la imatge (Punxeu sobre la imatge per veure-la ben gran).

Hirise des de MRO. 6 de juny 2021. NASA/JPL/Arizona University

Però tenim ara mateix una plèiade de naus orbitant el planeta i esperàvem veure la missió xinesa des de l’espai. El dia 6 de juny la càmera Hirise d’alta resolució a bord del Mars Reconaissance Orbiter (MRO) de la NASA captà el mòdul de descens, les dues ejeccions de gas i el ròver desplaçat del mòdul i un poc més enllà (fora de la foto que presente) l’escut tèrmic i el paracaigudes. Potser la publicació d’aquestes imatges per part de l’Agència Espacial Americana espentà, uns dies després, la publicació de les imatges xineses preses des de terra.

Ara a gaudir de les vistes marcianes des d’Utopia Planitia…. Un terreny que ens resulta ben familiar. Sembla un paisatge del desert del Sàhara amb dunes i tot.

Més informació en:
El rover chino Zhurong se hace un ‘selfie’ en Marte, Eureka, Daniel Marin, 11 juny 2021.

Imatges: de l’Agència Espacial Nacional Xinesa (CSNA)

i etiquetada amb , , , | Deixa un comentari

Retorn a Venus

0
Publicat el 5 de juny de 2021

L’exploració del sistema solar no s’atura. Però si tenim actualment sondes i robots a Mart, Júpiter, la Lluna, diversos asteroides, al Sol i, fins fa poc, en teníem a Saturn i les seues llunes, Plutó i fins i tot orbitant cometes, sembla que ens hem oblidat de Venus, un planeta ben prop i tan gran com la Terra. És veritat que fa uns anys l’Agència Espacial Europea (ESA) hi va enviar la sonda Venus Express i l’Agència Espacial Japonesa (JAXA) la missió Akatsuki però aquestes només estudien la densa atmosfera venusiana. Sembla ben poc l’interés que suscita Venus als científics planetaris.

Tanmateix Venus amaga una gran quantitat d’informació que ens podria ajudar a comprendre millor la Terra i el canvi climàtic així com la formació i evolució dels planetes al voltant d’altres estrelles, els exoplanetes. Ara bé l’exploració de Venus no és fàcil. La densa atmosfera del planeta amb una pressió atmosfèrica a la superfície de 93 bars (93 atmosferes) i una temperatura d’uns 470 graus, suficient per fondre el plom, fan inviable missions com les que diverses agències estan conduint a Mart. Cal dissenyar noves tecnologies per sobreviure a les temperatures extremes del planeta i a la seua pressió atmosfèrica.

Fases de l’entrada de la sonda DAVINCI+ en l’atmosfera de Venus. Goddard Space Flight Center, NASA.

Dins del Programa Discovery, especific per a missions petites i de baix cost, la NASA acaba de seleccionar la missió DAVINCI + i la VERITAS per a resoldre aquest buit. Cadascuna d’aquests rebrà uns 500 milions de dòlars per al seu disseny i construcció. D’aquesta manera es tractarà de resoldre aquest buit exploratori amb la missió fonamental d’esbrinar la raó per la qual un planeta que potser era molt semblant a la Terra en el seu origen, amb mars i potser un inici de vida, va acabar essent un infern, un planeta inhabitable.

Aquestes dues missions són complementàries. DAVINCI + constarà d’un orbitador i d’una sonda que s’endinsarà en l’atmosfera venusiana fins a depositar-se en la superfície. VERITAS serà una nau en òrbita al planeta que farà un mapa en alta resolució.

DAVINCI + (Deep Atmosphere Venus Investigation of Noble gasos, Chemistry, and Imaging)

La missió estarà formada per un orbitador i una sonda. La nau que es quede en òrbita servirà primerament d’enllaç ràdio amb la sonda per posteriorment fer un seguiment dels moviments dels núvols i la cartografia de la posició i composició dels minerals mesurant l’emissió de calor des de la superfície de Venus que s’escapa a l’espai a través de l’atmosfera.

L’orbitador de DAVINCI+ mesurant l’emissió de calors de les roques de la superfície. Goddard Space Flight Center, NASA.

La sonda de DAVINCI+ serà la part més espectacular de la missió. Una esfera ben resistent per aguantar la pressió i temperatura, se submergirà suaument frenada per uns paracaigudes a través de l’espessa atmosfera del planeta, Durant la caiguda d’uns 60 minuts de durada realitzarà mesuraments precisos de la temperatura, la pressió i els vents a totes les altures així com de la proporció i composició isotòpica de diversos gasos nobles i d’altres elements per a comprendre per què l’atmosfera de Venus és actualment un hivernacle desbocat, un veritable infern, en comparació a com és actualment la Terra. Finalment l’esfera es depositarà suaument en la superfície on s’espera que sobrevisca uns 20 minuts abans de fondre’s finalment. L’objectiu científic és comprendre com es va formar i va evolucionar, així com determinar si el planeta va tindre un oceà en un passat llunyà.

Entrada de la sonda DAVINCI+ en l’atmosfera de Venus. Goddard Space Flight Center, NASA.

A més, la sonda DAVINCI+ enviarà les primeres imatges en alta resolució de les característiques geològiques de Venus conegudes com “tessel·les” (que poden ser comparables als continents de la Terra), el que ens permetria esbrinar si Venus té plaques tectòniques i, per tant si l’interior és actiu com ho és la Terra. La sonda també prendrà les primeres imatges en alta resolució d’Alpha Regio, un altiplà antic que té dues vegades la mida de la Península Ibèrica amb muntanyes escarpades, a la recerca de proves per esbrinar si fa mil·lennis l’aigua superficial va influir en els materials. Per exemple, es podrien descobrir barrancs o llits d’antics rius, o simplement roques esculpides o modificades per la presència de l’aigua com hi ha a Mart, cosa que revolucionaria el nostre coneixement sobre el planeta bessó de la Terra.

Hi ha molt d’interés en aquesta missió ja que el descobriment de planetes semblants a la Terra al voltant d’altres estrelles, les exoTerres, de massa i òrbita situada dins de la zona habitable, podrien ser realment exoVenus, de massa semblant a la terrestre però un veritable infern. Aquesta missió a Venus pot ajudar a distingir-los.

James Garvin del Goddard Space Flight Center a Greenbelt, Maryland, és l’investigador principal.

VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy)

VERITAS cartografiarà la superfície de Venus per determinar la història geològica del planeta i entendre per què es va desenvolupar de manera tan diferent a la Terra. Des d’una òrbita entre 175 i 250 quilòmetres al voltant de Venus, utilitzarà un radar d’obertura sintètica, per traçar les elevacions superficials de pràcticament tot el planeta per crear un mapa global amb resolucions d’uns 30 metres o fins i tot menor i aconseguir reconstruccions 3D de topografia. Amb aquests mapes detallats es podrà confirmar si processos com la tectònica de plaques i el vulcanisme encara estan actius a Venus.

Sonda VERITAS amb el radar d’apertura sintètica. NASA / JPL-Caltech.

VERITAS també cartografiarà les emissions d’infrarojos de la superfície de Venus per determinar el tipus de roca de la superfície, que és en gran part desconeguda, i determinarà si els volcans actius alliberen vapor d’aigua a l’atmosfera. Suzanne Smrekar, del Jet Propulsion Laboratory (JPL) de la NASA, és la investigadora principal. JPL proporciona la gestió de projectes. El Centre Aeroespacial Alemany proporcionarà la càmera d’infrarojos mentre que l’Agència Espacial Italiana i el Centre Nacional d’Etudes Spatiales de França contribuiran al radar i a altres parts de la missió.

Una bona notícia per als planetòlegs ja que podrem conèixer un planeta pròxim però ben diferent als altres. La part negativa és que haurem d’esperar quasi una dècada per a poder veure-ho. Les sondes han d’eixir de la Terra entre 2028 i 2030.

Més informació:

Aprobadas las misiones VERITAS y DAVINCI+: la NASA vuelve a Venus, Eureka, Daniel Marin, 3 juny 2021

NASA to Explore Divergent Fate of Earth’s Mysterious Twin with Goddard’s DAVINCI+, By William Steigerwald, Nancy Neal Jones. Goddard Space Flight Center, NASA,

Imatges

1.- Imatge de la superfície de Venus amb dades de la sonda espacial Magellan  i el Pioneer Venus Orbiter de la NASA. NASA / JPL-Caltech

i etiquetada amb , , | Deixa un comentari

El ròver Zhurong ja roda per Utopia Planitia

0
Publicat el 23 de maig de 2021

Ja fa una setmana que el ròver xinés Zuhong tocà la superfície marciana en Utopia Planitia, una immensa zona més o menys plana de l’hemisferi nord del planeta. I finalment ahir el vehicle va baixar la rampa i va comença a moure’s per allunyar-se del mòdul de descens i començar la feina d’exploració.  Les fotos enviades des del vehicle mostren una plana sense pràcticament roques i sense muntanyes en la llunyania.

En la mateixa plana, però més al nord, aterrà la nau Viking 2 allà pel 1976, al principi de l’exploració de Mart des de la superfície. Però si comparem les dues fotografies veurem que aquella zona era més pedregosa, amb roques ben grosses a la vista que podien haver fet malbé l’aterratge d’aquella missió.

Les primeres fotografies de la zona d’aterratge arribaren el passat dimecres 19 de maig. Zuhong encara estava situat sobre la plataforma però ja tenia desplegats els panells solars mentre que l’antena d’alt guany apareixia en primer pla. Aquest imatge en color es va fer amb la càmera multiespectral MSCam situada en el pal del ròver.

Sembla que la intenció d’utilitzar només la nau orbital de Tiawen-1 com a enllaç de ràdio amb la Terra ha retardat l’arribada de les dades ja que la nau ha hagut de canviar d’òrbita després haver deslliurat el mòdul de descens amb el ròver a bord la setmana passada. Ara la nau orbital passarà una vegada al dia per sobre de Zuhong i la comunicació serà més fluida.

Dimecres ja vàrem veure com els dos raïls de la rampa per on baixaria el ròver ja s’havien desplegat com es pot veure en aquesta imatge de la televisió xinesa.

I finalment el diumenge 22 de maig de 2021 a las 02:40 UTC (04:40 hora central europea) el petit robot xinés va baixar per la rampa i es va moure mig metre per Utopia Planitia. Una de les càmeres de riscos de la part posterior del ròver (l’equivalent de les hazcams de Perseverance) va captar la seqüència de la baixada per la rampa.

Es veuen en primer pla les rodes del ròver i el mòdul de descens que l’ha fer arribar fins allí sa i estalvi.

Una vegada en la superfície, Zhurong ens ha mostrat, amb una de les càmeres de riscos de la part davantera, el terreny que explorarà en les pròximes setmanes. Una plana immensa on fa milers de milions d’anys hi havia un gran oceà que ocupava gran part de l’hemisferi nord del planeta.

En aquesta fotografia, es veuen les antenes i les seues ombres del Georadar (GPR) que servirà per observar fins a una fondària d’uns 100 m sota la superfície marciana.

Mentrestant amb una de les càmeres de riscos de la part posterior s’obtenien vistes del mòdul de descens. És la imatge que obre aquest post que ha estat tractada i acolorida per Alain Mirón Velázquez (@alanmir). S’hi pot veure que la bandera roja de la Xina es troba desplegada a l’esquerra del mòdul.

Ara Zhurong ha d’anar per feina. Li queden per davant 92 dies de missió que podrien ampliar-se si tot funciona bé.

 

 

Més informació:
El rover Zhurong ya rueda por la superficie de Marte, Eureka, Daniel Marín, 22 maig 2021

Imatges:

1.- Fotografia acolorida presa per una de les càmeres de riscos de la part posterior del ròver, cal notar la bandera de la Xina que es va desplegar a la banda esquerra de la rampa. CNSA/Alain Mirón Velázquez
2.- Imatges de CNSA/Joaquín García @GarciafXimo

El rover Zhurong xinés aterra amb èxit a Mart

6
Publicat el 15 de maig de 2021

La Xina ho ha aconseguit. Aquesta nit passada, a les 23:18 UTC (01:18 hora central europea) del 14 (15) de maig de 2021, el mòdul de descens de la missió Tianwen 1, carregat amb el ròver Zhurong (déu del foc, en xinés), ha aconseguit aterrar suaument en la gran plana marciana Planitia Utopia. Una fita que ha fet història i que només havia aconseguit la tecnologia de la NASA fins ara: l’aterratge suau i amb èxit d’una sonda a la superfície del planeta Mart. I ho ha fet a la primera, sense haver de patir les doloroses pèrdues de naus com han sofert americans, europeus i russos quan han tractar d’arribar i posar-se sense danys en el planeta roig.

Feia tres hores que la càpsula que portava el mòdul de descens s’havia separat de l’orbitador. Per aconseguir el seu objectiu havia de travessar la tènue atmosfera marciana, la part més perillosa de la baixada, els anomenats 7 minuts de terror. La travessia seria molt semblant a la baixada del robot Perseverance de la NASA, però sense la part final de la maniobra sky crane, substituïda per una baixada clàssica amb retrocoets. L’èxit dels aterratges de les missions lunars Chang’e ha estat una experiència valuosa per als enginyers de l’Agència Espacial Xinesa (CNSA).

Entrada, baixada i aterratge del mòdul de descens  que du el ròver Zhurong. CNSA

La càpsula que protegia el mòdul de descens i el ròver Zhurong, amb una massa total de 1745 kg, entrà a l’atmosfera marciana a una velocitat de 4,8 km/s. Amb l’ajuda de navegació òptica, comparant les imatges d’un catàleg a bord amb les imatges de navegació obtingudes en temps real durant el descens, buscant punts de referència específic en la superfície, i amb la innovació d’un flap aerodinàmic (una mena de petit aleró que ix de la càpsula), la càpsula va enfilar i dirigir-se al lloc d’aterratge fixat. No debades la missió xinesa arribà a Mart el 10 de febrer passat. Des d’aleshores, en òrbita al voltant del planeta, els enginyers s’han ocupat de trobar un lloc adequat per fer-hi arribar al robot Zhurong.

Quan el fregament atmosfèric frenà la càpsula  a 1660 km/h, es desplegà el gran paracaigudes supersònic que aconseguí rebaixar la velocitat fins a 340 km/h quan es trobava a només 1,5 kilòmetres d’altura. Va ser en aquest moment quan la càpsula enganxada al paracaigudes soltà el mòdul de descens que, amb l’ajuda de navegació òptica i un LIDAR làser va depositar suaument el ròver en la superfície marciana a una velocitat de només 3 km/h, com la d’una caminada ràpida. Com passà amb la baixada de Perseverance, s’espera que en uns dies podrem veure els vídeos de l’aterratge.

Animació de l’aterratge del ròver Zhurong a Mart. CNSA

En aquest cas no hem gaudit de la informació quasi en directe de la baixada del robot xinés per l’hermetisme de les autoritats espacials xineses. A les 00:37 UTC (02:37 hora central europea), més d’una hora després de l’aterratge, les agències xineses donaren la notícia. Un esdeveniment tan important com aquest mereixia una millor i més ràpida cobertura informativa però la política de comunicació de l’Agència xinesa és aquesta i no sembla que vaja a canviar.

El ròver Zhurong ha de baixar del mòdul de descens i rodar per la superfície en els pròxims dies. Evidentment no hi ha informació de quan serà el moment en el que això passe. L’objectiu és que explore el seu entorn durant un mínim de 92 dies (90 sols) i, per a aconseguir-ho, el robot farà servir una plèiade d’instruments científics, la majoria de fabricació xinesa però també d’altres construïts amb la col·laboració internacional d’instituts d’investigació d’Àustria i França. A més a més a l’Argentina s’ha instal·lat una estació de seguiment de la missió.

Instruments científics del ròver Zhurong. (CC BY-NC-ND 2.0)

Ja tenim una altra estació terrestre situada a la superfície marciana. En el mapa adjunt podem veure la situació de la nova sonda, que està en la zona d’Utopia Planitia  just en l’hemisferi nord entre les posicions de Perseverance i del Viking 2.

L’exploració de la superfície de Mart és el primer objectiu de les potències espacials de la Terra. Europa amb l’Agència Espacial Europea (ESA) i Rússia amb l’Agència Espacial Federal Russa (Roscosmos) encara no han entrat en aquesta nova cursa espacial amb èxit. De moment només disposen de sondes que orbiten el planeta. Tanmateix el 2022 es llançarà la missió Exomars, en la que col·laboren les dues agències, després d’haver d’ajornar el llançament el 2020 per problemes amb el paracaigudes, un element clau per que la missió puga sobreviure als set minuts de terror.

Més informació
El rover Zhurong de la misión Tianwen 1 aterriza con éxito en Marte, Daniel Marín, 15 maig 2021

China succeeds on country’s first Mars landing attempt with Tianwen-1 Tobias Corbett, 14 maig 2021

Imatges

1- Imatge artística de la primera missió xinesa del ròver  Tianwen-1, que aterrà al planeta vermell mitjançant  retrocoets.  CCTV / China National Space Administration (CNSA)
2.- Infografia de la missió Tianwen-1 per  wlr2678 (CC BY-NC-SA 4.0)
3.- Entrada, baixada i aterratge del mòdul de descens que du Zhurong. CNSA
4.- Instruments científics del ròver Zhurong. (CC BY-NC-ND 2.0)
5. Aterratges reeixits a Mart. NASA

L’helicòpter Ingenuity completa els vols de prova i segueix

0
Publicat el 9 de maig de 2021

El petit helicòpter Ingenuity, que va arribar a Mart el passat 18 de febrer amb el ròver Perseverance, ha fet ja els cinc vols previstos i, per tant, ha completat amb èxit el programa per demostrar que la tecnologia usada és factible en una atmosfera tan lleugera com la del planeta roig. La futura exploració robòtica de Mart serà mixta, amb robots rodant per la superfície ajudats per drons que els acompanyaran i faran d’exploradors des de les altures.

Els cinc vols previstos s’han realitzat durant una campanya de proves de 30 dies. Encara que les objectius inicials no eren tan ambiciosos, finalment els vols efectuat han fer arribar el dron a alçades de fins a 10 m i a temps de vol d’un màxim de 120 segons. El recorregut màxim ha estat de 266 m durant el qual s’ha enlairat, planat i ha tornat al punt inicial.

El 25 d’abril Ingenuity va fer el tercer vol. En una de les fotos en color s’observa el ròver Perseverance en la llunyania. NASA/JPL-Caltech. @estelsiplanetes

El 19 d’abril va el moment del primer vol. L’aparell, però, només es va elevar 3 metres i el seu temps de vol va durar 39 segons. En el segon vol, el 22 d’abril, la duració del vol ja va ser de 52 segons pujant a quasi 5 metres i  desplaçant-se 4.3 m en direcció horitzontal. El 25 d’abril Ingenuity es va elevar per damunt dels 5 metres, es va desplaçar 100 m i el seu vol va durar 80 segons amb una velocitat de 2.2 m/s. Va ser llavors quan va realitzar la fotografia en la que es veu el ròver Perseverance al fons. Després d’un vol fallit el 29 d’abril es va tornar a programar el quart vol per al 30. En aquest segon intent Ingenuity es va elevar a uns 5 metres, es va desplaçar a 266 m del seu punt d’eixida i el seu vol va durar 117 segons. Va ser en aquest vol quan es va enregistrar per primera vegada el so d’Ingenuity en el cel de Mart.

D’aquesta manera en el quart vol del 30 d’abril el ròver Perseverance es va convertir en la primera sonda espacial que va enregistrar sons d’una altra sonda en un altre planeta. Durant aquest vol, un micròfon inclòs amb l’instrument SuperCam a bord de Perseverance va captar el brunzit de les aspes i el rebombori del vent.

L’àudio està gravat en mono i potser siga millor escoltar-ho amb auriculars. Els científics van facilitar l’audició aïllant el so de les aspes de l’helicòpter que giren a 84 Hz (voltes per segon), reduint les freqüències per sota dels 80 Hz i per sobre dels 90 Hz i augmentant el volum del senyal restant. Es van retallar algunes freqüències per fer ressonar el brunzit de l’helicòpter, que és més fort quan l’helicòpter passa pel camp de visió de la càmera.

En el cinqué i darrer vol l’enginy arribà fins a 10 metres d’alçada, recorregué 129 m i. per primera vegada no retornà al seu lloc d’origen.

Diagrama que mostra els diferents components de l’helicòpter IngenuityNASA/JPL-Caltech

El bon comportament de l’helicòpter ha sorprés tothom. La que havia de ser una fase de demostració de tecnologia de només 30 dies ha estat un èxit rotund. Per això la NASA ha aprovat una extensió d’activitats del dron. Aquesta nova fase de demostració d’operacions farà enlairar Ingenuity cada 2 o 3 setmanes fins a finals d’agost de 2021, tot tractant de no entorpir les activitats dels instruments de Perseverance. I és que cada vegada que s’enlaira l’helicòpter cal aturar totes les activitats del ròver per a que aquest li faça fotos, vídeo, grave el seu so i sobre tot que reculla tota la informació de telemetria i d’imatges per reenviar-la a la Terra. Aquesta ha estat, per tant, una decisió que no ha agradat gens als directors dels principals instruments del robot mòbil que estan ansiosos per començar a estudiar de manera exclusiva l’entorn del cràter Jezero i deixar arrere l’experiment del dron.

Imatges:

1.- Ingenuity en el quart vol. NASA/JPL-Caltech
2.- Imatge obtinguda en el tercer vol d’Ingenuity. En la part superior esquerra es veu el rover Perseverance. NASA/JPL-Caltech @estelsiplanetes
3.- So d’Ingenuity gravat amb el micròfon de l’instrument SuperCam de Perseverance. NASA/JPL-Caltech/LANL/CNES/CNRS/ISAE-Supaéro
4.- Diagrama que mostra els diferents components de l’helicòpter Ingenuity.  NASA/JPL-Caltech

Ingenuity ha volat

0
Publicat el 19 d'abril de 2021

Després de diversos ajornaments, amb una actualització del programari, l’helicòpter Ingenuity ha volat finalment. Ha estat un vol curt, de només 1 minut, però ha fet història. És possible volar en Mart i, d’aquesta manera s’obren unes possibilitats enormes en l’exploració espacial del planeta.

La tensió era extrema en el centre de control del Joint Propulsion Laboratory (JPL) mentre s’esperaven amb ansia les dades del vol del petit dron. Ingenuity no pot retransmetre dades a la Terra, sinó que el ròver Perseverance ha de ser qui reba i reenvie les dades de vol. Si, a més cal sumar-hi el desfasament horari d’uns 15 minuts a causa de la velocitat finita de la llum, l’esdeveniment no es podia seguir en  directe. Però així que arribaren les primeres dades i la primera foto feta des d’Ingenuity de la seua ombra sobre la superfície marciana tot eren salts d’alegria.

Ingenuity va fer aquesta foto mentre sobrevolava la superfície marciana el 19 d’abril 2021, en el primer vol d’un objecte controlat sobre un altre planeta. NASA/JPL-Caltech

Fins i tot,  MiMi Aug, la cap de projectes de l’helicòpter, emocionada va estripar en públic els papers on s’hi trobaven les instruccions que calia seguir per si la prova fallara. I és que les dones del JPL són fonamentals en totes les activitats del Perseverance i Ingenuity.

L’helicòpter alimentat amb energia solar es va enlairar a les 12:33 Hora Solar Mitjana Local (hora de Mart), un moment del dia en que l’equip d’Ingenuity va determinar que tindria unes condicions òptimes d’energia i millors condicions per volar. Les dades de l’estació meteorològica MEDA han estat fonamentals per conèixer la velocitat i direcció del vent. Les dades de l’altímetre a bord d’Ingenuity indiquen que l’enginy va pujar a la seua altitud màxima prescrita de 3 metres i va mantenir un vol estable durant 30 segons. Després va descendir, tocant de nou la superfície de Mart després de registrar un total de 39,1 segons de vol.

I seguint la tradició de la NASA de posar noms a tots els indrets on s’han realitzat actes singulars, el camp d’aviació des d’on ha volat per primera vegada un enginy terrestre en el cel d’un altre planeta ha rebut el nom de Camp d’aviació Germans Wright (Wright Brothers Field) com a homenatge als dos fabricants de bicicletes innovadors de Dayton (EEUU) que foren els primers que volaren en un artefacte amb motor l’any 1903, i en reconeixement a l’enginy i la innovació que continuen impulsant l’exploració, segons anuncià l’Administrador associat per a ciència de la NASA, Thomas Zurbuchen.

Recordeu, però, que Ingenuity és només una demostració tecnològica — veure que és possible volar en Mart –, com l’experiment MOXIE, i no un instrument científic com MEDA o PIXL, ja que no té el propòsit d’ajudar o realitzar cap investigació científica en el planeta roig. Els experiments amb l’helicòpter duraran uns 30 dies i després, si no hi ha contraordre, el petit dron serà abandonat fins que d’ací a unes dècades siga recuperat per depositar-lo en algun museu de l’aviació a Mart o a la Terra.

Mes informació:
NASA’s Ingenuity Mars Helicopter Succeeds in Historic First Flight

Imatges: NASA/JPL-Caltech

Huit preguntes sobre Ingenuity, l’helicòpter que pot passar a la història de l’aviació

0
Publicat el 13 d'abril de 2021

Aquesta demostració tecnològica de la NASA intenta convertir-se a l’abril en el primer vol a motor realitzat en un altre planeta. Si té èxit, obrirà la porta a noves vies d’exploració en Mart, fins i tot per a les missions amb humans en el planeta roig.

Què és exactament Ingenuity?

Ingenuity és un petit helicòpter, un dron, inclòs entre els dispositius que la missió Mars 2020 de la NASA i el rover Perseverance han portat a Mart. Es tracta d’una demostració tecnològica, com l’experiment MOXIE, i no un instrument científic com MEDA o PIXL, ja que no té el propòsit d’ajudar o realitzar cap investigació científica en el planeta roig.

Altres demostracions tecnològiques reeixides que NASA ha portat al planeta roig són el rover Sojourner de la missió misión Pathfinder, i Mars Cube One (MarCo) junt a la missió InSight.

Què farà a Mart?

L’objectiu principal és intentar un vol d’helicòpter a motor en aquest planeta. És una frase senzilla de dir però que engloba una infinitat d’obstacles perquè isca bé. El primer d’ells, l’atmosfera marciana, que és molt prima i té prop d’un u per cent de la densitat de la terrestre. Per això, Ingenuity necessita ser extremadament lleuger i aconseguir que les seues aspes giren a una velocitat molt major. L’únic avantatge de volar en Mart és que la gravetat del planeta roig és només un terç de la terrestre, per la qual cosa cal fer menys esforç per a alçar la mateixa quantitat de massa.

Un altre objectiu important d’Ingenuity és observar si la seua estructura és capaç d’aguantar les extremes temperatures de la nit marciana, que poden baixar fins als -90 graus Celsius.

Selfie que Perseverance ha fet després de deixar Ingenuity asoles en terra. / NASA/JPL-Caltech

Quan enlairarà?

La NASA esperava que Ingenuity enlairara per primera vegada ahir diumenge 11 d’abril. No obstant això, l’agència ha trobat problemes en el software del dron després d’una prova de gir a alta velocitat de les aspes de l’helicòpter. Encara no hi ha una data planificada per al vol, però la NASA estima programar un nou intent al llarg de la tercera setmana d’abril.

#MarsHelicopter update: Ingenuity is healthy, but it needs a flight software update. While the development of the software is straightforward, validating and uplinking it will take time. We will set a new flight date next week. https://t.co/b0MzMIPGKz pic.twitter.com/R2wYKaCxqY
— NASA JPL (@NASAJPL) April 13, 2021

La finestra de la missió és de 30 sols (31 dies terrestres), temps en el qual Ingenuity intentarà fer diversos vols de prova i farà diferents tasques, com a presa de fotografies i dades ambientals.

On ha estat Ingenuity tot aquest temps de missió?

Davall del ‘ventre’ del cos de Perseverance, encaixat lateralment i protegit del material que es va alçar durant el descens i aterratge del ròver. Abans, tant aquest com l’helicòpter, van viatjar de la Terra a Mart en una càpsula al llarg dels 471 milions de quilòmetres que separen els dos planetes. Com una ‘pilota’ interplanetària que portava un kanguro i el seu bebé.

Com és aquest petit helicòpter?

Ingenuity és com una maleta de mà (13,6 x 19,5 x 16,3 centímetres) i pesa uns 1,8 quilos, a diferència de Perseverance, que mesura el mateix que un vehicle de ciutat i la seua massa supera la tona. Però la grandària d’aquest helicòpter no té res a veure amb la seua capacitat. Com haurà de volar per si sol i sense comunicar-se amb la Terra en temps real, està preparat per a prendre decisions de manera automàtica sobre la base de paràmetres programats pels enginyers i enginyeres de NASA: haurà d’ajustar la seua temperatura interna, analitzarà el terreny durant el vol per a mantindre la seua posició i prendrà imatges de la superfície en altura.

Què ha aconseguit fins ara?

El fet de construir Ingenuity, defensa NASA, és de per si mateix un èxit L’agència espacial ha dedicat sis anys a dissenyar aquest dron i demostrar que és possible construir una eina ultralleugera capaç de generar energia suficient com per a enlairar-se del sòl marcià i sobreviure de manera autònoma en l’entorn marcià. En aquest vídeo (a partir del 2:46) s’aprecia com vola aquest xicotet dron.
De moment Ingenuity ha superat la fase de llançament de la missió i ha demostrat que pot recarregar els seus bateries en el trajecte espacial. El petit helicòpter ha aconseguit volar en les cambres especials en la Terra que simulen l’escenari i l’atmosfera de Mart. Ara toca eixir del simulador i demostrar-lo en la vida real.

Ingenuity comença a moure les aspes. 9 d’abril 2021. NASA/JPL-Caltech/ASU

Quins passos ha de superar abans de volar?

Abans d’enlairar autònomament, Ingenuity ha de complir una llista d’objectius previs:

– Sobreviure el trajecte interplanetari a Mart i l’aterratge (fet).

– Desplegar-se de manera segura del ‘ventre’ de Perseverance i posar-se en terra (fet).

– Mantindre la seua temperatura interna durant la nit marciana (fet).

– Recarregar els seus bateries amb els seus panells solars (fet).

– Comunicar-se amb el ròver mitjançant un subsistema de Perseverance i confirmar aquesta comunicació amb NASA (fet).

– Desbloquejar els seus rotors (fet).

– Fer girar els seus rotors per primera vegada, sense enlairar del sòl.

Què passarà després si té èxit?

Si el primer vol té èxit, Ingenuity intentarà realitzar uns altres vols durant els 31 dies de proves previstos. En qualsevol cas, el  petit helicòpter haurà aconseguit una proesa de l’aviació: demostrar que és possible dissenyar un aparell de vol a motor ajustat a les característiques d’un altre planeta.

Aquesta demostració tecnològica obrirà el camí per a enviar instrumental amb capacitat de vol en les futures missions a Mart, amb i sense humans. A més, oferirà un punt de vista únic, que no està a l’abast dels satèl·lits que orbiten aquest planeta ni els ròvers o estacions desplegades en la seua superfície.

Finalment, NASA defensa que un dron en Mart podria potencialment transportar càrregues lleugeres d’un lloc a un altre sobrevolant la superfície marciana.

José Luis Zafra 10/4/2021 08.00 CEST Publicat originalment a l’Agencia SINC. Ocho preguntas sobre Ingenuity, el helicóptero ‘bebé’ de Perseverance que puede pasar a la historia de la aviación
Font: SINC.  Creative Commons.

Imatge:
Ingenuity’s Blades Are Released,  NASA/JPL-Caltech/ASU