Un objecte misteriós es fusiona amb un forat negre

Fa uns dies els científics que controlen els detectors d’ones gravitatòries Virgo i LIGO anunciaren el descobriment d’un objecte compacte d’unes 2,6 masses solars, estant, per tant, en un interval entre l’estrella de neutrons més massiva i el forat negre més lleuger mai vist. En el fenomen observat ara, i que va ocórrer fa uns 800 milions d’anys,  aquest objecte misteriós es va fusionar amb un forat negre de 23 masses solars i, en fer-ho, va emetre una intensa ona gravitatòria. Atès que l’observació aïllada d’aquesta ona, que es va detectar a la Terra l’agost de 2019, no ens permet distingir si l’objecte compacte és un forat negre o una estrella de neutrons, la seua natura exacta continua sent un misteri.

Durant molt de temps, la comunitat astronòmica ha estat desconcertada per la manca d’observacions d’objectes compactes amb masses en l’interval des de 2,5 fins a 5 masses solars. Aquesta misteriosa zona grisa es coneix com el “buit en la distribució de masses“: un interval de masses aparentment massa petites per a un forat negre i massa grans per a una estrella de neutrons. Tant les estrelles de neutrons com els forats negres es formen quan estrelles molt massives esgoten el seu combustible nuclear i exploten com a supernoves. El que queda després de l’explosió depèn de la quantitat que roman del nucli de l’estrella. Els nuclis menys massius tendeixen a formar estrelles de neutrons, mentre que els més massius col·lapsen en forats negres. Entendre si hi ha un buit en la distribució de masses en l’interval esmentat, i per què, ha estat un enigma durant molt de temps per als científics.

El problema rau en el fet que un estel de neutrons té un interval de masses possibles a causa de diverses condicions físiques. Per això, un estel de neutrons té una massa de com a mínim 1,1 masses solars (M) mentre que el límit superior de la massa d’un estel de neutrons ve donat teòricament pel limit Tolman–Oppenheimer–Volkoff i és generalment d’uns 2,1 M. Tanmateix estudis recent posen el límit una mica més alt, fins a 2.16 M. De fet, la màxima massa observada és d’uns 2,14 M per a l’objecte PSR J0740+6620 descobert en setembre del 2019. Ara, si l’objecte misteriós és realment un estel de neutrons, caldrà repensar aquestes previsions o bé cercar un altre candidat totalment desconegut.

Representació en un gràfic de temps front a freqüència de les dades de l’esdeveniment GW190814, observat per LIGO Hanford (panell superior), LIGO Livingston (panell central) i Virgo (panell inferior). El temps conta des de 10 segons abans de la fusió dels dos objectes. La energía en una quadrícula determinada en temps-freqúència està representada per la paleta de colors. En el panel central el senyal fou més intens.

Les col·laboracions científiques que operen el detector Advanced Virgo a l’Observatori Gravitatori Europeu (EGO, per les sigles en anglès), prop de Pisa a Itàlia, i els dos Advanced LIGO, als Estats Units, han anunciat la descoberta d’aquest objecte d’unes 2,6 masses solars, és a dir, situat dins de l’anomenat “buit en la distribució de masses “, qüestionant així que aquest buit d’objectes realment existira. La natura de l’objecte continua sent un misteri, ja que aquesta observació d’ones gravitatòries per si sola no permet distingir si es tracta d’un forat negre o d’una estrella de neutrons. Fa uns 800 milions d’anys, l’objecte estrany es va fusionar amb un forat negre de 23 masses solars i, en fer-ho, va generar un forat negre final d’unes 25 vegades la massa del Sol. La fusió va emetre una intensa ona gravitatòria (la diferència de les masses abans i després de la fusió, d’unes 0,6 masses solars, convertides en energia) que els tres instruments de la xarxa van detectar el 14 d’agost de 2019, i, per tant, s’ha etiquetat com a GW190814. El descobriment s’acaba de publicar en la revista The Astrophysical Journal Letters.

Una peculiaritat d’aquest esdeveniment és que la fusió mostra la proporció més inusual entre masses d’un sistema de dos estels registrat fins a la data. La massa més gran és aproximadament 9 vegades més massiva que la massa menor.

L’anàlisi de la majoria de senyals anunciats per LIGO i Virgo fins a la data ha transcorregut sense grans sobresalts ja que les masses involucrades han facilitat la identificació precisa del tipus d’objectes“, comenta José Antonio Font, coordinador del grup Virgo a València. “Afortunadament, amb GW190814, com també va passar en part amb GW190425, entrem en un terreny on les conclusions ja no són tan senzilles. Aquest és un senyal apassionant que qüestiona les nostres idees sobre la formació dels objectes compactes. Benvingut siga!

Masses dels estels de neutrons i forats negres mesurats mitjançant ones gravitatòries i observacions telescòpiques. Les marques grogues i púrpura representen les mesures electromagnètiques (amb telescopis) d’estels de neutrons i forats negres, respectivament, mentre que les marques taronja i blava són les corresponents mesures usant ones gravitatòries. El senyal GW190814 destaca al mig de la figura com una fusió d’un forat negre i un objecte misteriós amb una massa d’unes 2,6 vegades la massa del Sol, un esdeveniment que va produir un altre forat negre. LIGO-Virgo. Frank Elavsky,  Aaron Geller,  Northwestern.

El senyal associat a una fusió tan inusual va ser clarament detectat pels tres instruments de la xarxa LIGO-Virgo, amb una relació global senyal-soroll de 25. Gràcies principalment al retard entre els temps d’arribada del senyal en els detectors, és dir, els dos Advanced LIGO als EUA i l’Advanced Virgo a Itàlia, la xarxa de 3 detectors va ser capaç de localitzar l’origen de la font que va generar l’ona en uns 19 graus quadrats.

La identificació de nous tipus de senyals com GW190814 es basa en la millora contínua dels models teòrics de formes d’ona “, afegeix l’investigador Sascha Husa, de la Universitat dels Illes Balears (UIB). “El grup UIB ha contribuït al desenvolupament d’alguns dels models utilitzats per a aquest esdeveniment, per als quals l’ús de la supercomputadora més gran d’Espanya, Mare Nostrum, ha estat essencial.”

Regió del cel d’on prové el senyal GW190814 amb la major probabilitat. Les àrees ombrejades en blau fan referència a l’anàlisi online inicial de les dades, mentre que les àrees ombrejades en púrpura fan referència a la localització final en el cel.

Quan els científics de LIGO i Virgo van detectar aquesta fusió, immediatament van enviar un avís a la comunitat astronòmica. Molts telescopis terrestres i espacials van fer un seguiment a la recerca de llum i d’altres ones electromagnètiques, però, a diferència de la famosa fusió de dues estrelles de neutrons detectada a l’agost de 2017 i que van donar lloc a l’anomenada astronomia multi-missatger, en aquest cas no es va recollir cap senyal.

Thomas Dent, coordinador del programa d’ones gravitatòries a l’Institut Gallec de Física d’Altes Energies (IGFAE), assenyala que “GW190814 mostra novament el potencial de la xarxa global de detectors per localitzar aquests misteriosos esdeveniments còsmics a l’espai amb més precisió, amb l’objectiu de buscar qualsevol emissió de llum o d’altres partícules. Estem millorant contínuament els mètodes per a la detecció i el seguiment de les fonts d’ones gravitatòries a mesura que la xarxa va ampliant-se.

Segons els científics de Virgo i LIGO, l’esdeveniment d’agost de 2019 no va ser vist en el espectre electromagnètic per diverses raons probables. En primer lloc, aquest esdeveniment estava sis vegades més lluny que GW170817, cosa que dificulta la detecció de qualsevol senyal electromagnètic. En segon lloc, si la col·lisió va involucrar dos forats negres, probablement no hi va haver cap emissió en l’espectre electromagnètic. En tercer lloc, si l’objecte més petit del sistema va ser, de fet, un estel de neutrons, el seu company forat negre 9 vegades més massiu podria haver-se’l engolit sencer; un estel de neutrons engolit completament per un forat negre no produiria cap emissió electromagnètica.

Gràcies a les millores a l’observatori Virgo/EGO, en les tècniques d’anàlisi de dades i en els models dinàmics astrofísics, àrees on l’Institut de Ciències del Cosmos de la Universitat de Barcelona (ICCUB) té un paper rellevant, esperem poder detectar més esdeveniments com GW190814 que ens permeten entendre la natura exacta d’aquests intrigants objectes astrofísics“, explica Jordi Portell, coordinador del grup Virgo al ICCUB.

La identitat de l’objecte detectat el 14 d’agost de 2019 continua sent un misteri.

A més de posar a prova el nostre enteniment de l’evolució estel·lar i de la producció d’estrelles de neutrons i forats negres en el buit de masses, la raó peculiar entre les masses del sistema binari i el fet de ser l’esdeveniment d’ones gravitatòries millor localitzat en el cel fins a la data sense contrapartida electromagnètica, ha permès dur a terme nous tests de la teoria de la gravetat i una nova mesura de la constant de Hubble, compatible amb aquella obtinguda mitjançant l’esdeveniment GW170817.

L’esdeveniment GW190814 és un bon exemple de com les ones gravitatòries tenen el potencial de canviar radicalment el nostre coneixement del cosmos tant a nivell astronòmic com a nivell de física fonamental“, declara Mario Martínez, coordinador del grup Virgo a l’Institut de Física d’Altes Energies (IFAE) de la Universitat Autònoma de Barcelona. “Les dades acumulades pels interferòmetres LIGO i Virgo ara i en els propers anys amb una major sensibilitat hi contribuiran.

Futures observacions amb Virgo, LIGO i possiblement altres telescopis podran detectar esdeveniments similars i ajudar-nos a respondre les nombroses preguntes que ha plantejat la detecció de GW190814.

Cinc grups a l’estat espanyol estan contribuint a l’astronomia d’ones gravitatòries de LIGO-Virgo, en àrees que van des del modelatge teòric de les fonts astrofísiques fins a la millora de la sensibilitat del detector per als períodes d’observació actuals i futurs. Dos grups, a la Universitat dels Illes Balears (UIB) i a l’Institut Gallec de Física de Altes Energies (IGFAE) de la Universitat de Santiago de Compostel·la (USC), formen part de la Col·laboració Científica LIGO (EEUU); mentre que la Universitat de València (UV), l’Institut de Ciències del Cosmos de la Universitat de Barcelona (ICCUB) i l’IFAE de la Universitat Autònoma de Barcelona són membres de Virgo (Europa).

Més informació: “El curioso caso de GW190814: la fusión de un agujero negro de masa estelar y un objeto compacto misterioso”

Imatges. Col·laboració Virgo i LIGO.

3 pensaments a “Un objecte misteriós es fusiona amb un forat negre

Respon a Enric Marco Cancel·la les respostes

L'adreça electrònica no es publicarà. Els camps necessaris estan marcats amb *

This site uses Akismet to reduce spam. Learn how your comment data is processed.