Pols d'estels

El bloc d'Enric Marco

Arxiu de la categoria: ESA

Una visita al museu espacial de l’ESA a Noordwijt

0
Publicat el 31 d'agost de 2024
Vista general de l’Space Expo.

Una de les etapes del nostre viatge estiuenc als Països Baixos amb el Centre Excursionista de Tavernes de la Valldigna ha estat la visita a l’exposició permanent de material espacial del centre científic i tecnològic de l’Agència Espacial Europea (ESA, de les sigles en anglés) a Noordwijt, prop de Den Haag, l’anomenat Space Expo. No cal aclarir que l’aturada la vaig proposar jo.


La visita a les instal·lacions ha estat curta. Només hem tingut una hora per recórrer l’espai expositiu de les diferents recreacions i maquetes de la tecnologia espacial europea però, també, i molt més emotiu, la vista a moltes mòduls espacials i objectes que han estat a l’espai.

L’entrada es fa per un corredor on s’exposen diverses imatges icòniques de la cursa espacial europea. Imatges de satèl·lits del programa Copernicus, d’estudi de la Terra i prevenció de catàstrofes, per exemple. No podia faltar la imatge icònica de l’astronauta italiana Samantha Cristofereti flotant, tractant de fer fotografies per la Cupola, la finestra panoràmica de l’Estació Espacial Internacional (ISS). Això em portà a explicar el paper dels astronautes, la feina que es fa a l’ISS i la discriminació que han patit les dones per l’accés a l’espai, que tan bé s’explica al llibre AstronautA, Pioneres de l’exploració espacial d’Amelia Ortiz.

Càpsula de retorn Soiuz TMA-03M russa amb la que André Kuipers retornà de l’ISS. 2012.

Només passar el corredor ens troben en un instrument neerdandés que forma part dels satèl·lits de reconeixement terrestre Copernicus. Un panel ens mostra on s’hi troben en directe cadascun dels satèl·lits europeus més importants.

Passada aquesta sala s’obre l’ample espai expositiu. Davant nostre maquetes dels coets Ariane, de l’ISS, etc dels que parlaré més endavant.

A l’esquerre una escala ens mena a una sala on s’exposen diversos elements que han estat a l’espai. Aquí baix una mena de cúpula amb instrumental dins situat sobre una plataforma on apareix la paraula Giotto sembla part de la càpsula que protegia la nau Giotto que visità el cometa Halley el 1986. I dic sembla ja que la informació és nul·la. Serà una constant en la visita. El panells explicatius són escassos i poc clars. Davant dels companys he de fer moltes improvisacions. En la mateix sala dos grans panells solars ens mostra com aconsegueixen l’energia els satèl·lits.

Toveres d’un Ariane 1.

Al costat ja trobem la primera meravella. La càpsula de retorn de la missió Soiuz TMA-03M russa amb la que André Kuipers, segon astronauta neerlandès a l’espai, retornà en un de les dues missions a l’ISS. Es nota com la coberta està cremada pel reingrés a l’atmosfera, i com d’una de les “finestres” del mòdul es desplegà el paracaigudes. En la sala el podeu veure sobre una pantalla on l’astronauta explica les seues aventures espacials.

Avancem i arribem a l’àrea dels coets Ariane, meravella tecnològica europea. Construïts a Tolosa de Llenguadoc, per l’empresa ArianeSpace, són llançats des del Port Espacial de Kourou, Guaiana francesa. Una immensa tovera real d’un Ariane 1 presideix la sala. Les toveres són dispositius que converteixen l’energia de combustió d’un fluid en energia cinètica. Són les que s’utilitzen principalment en coets. La immensitat de la tovera present ja fa imaginar la gran altura d’un coet, que necessita endur-se tant el comburent, normalment oxigen líquid, com el combustible, normalment hidrogen líquid. Diversos models dels coets Ariane ens mostren l’evolució de la tecnologia europea de pujada de material a l’òrbita, des del Ariane 1 fins l’actual Ariane 5. Allí, al costat et podies posar sota una part d’un coet real i sentir com s’encenien les toveres.

Càpsula russa Vostok, que s’usava en la Unió Soviètica als anys 60 abans dels Soiuz.

El temps de visita s’esgotava i encara ens quedava la meitat de l’exposició. Una sala al fons ens mostra material real d’una càpsula russa Vostok, que s’usaven en la Unió Soviètica als anys 60 abans dels Soiuz. La seua forma esfèrica la fa inconfusible i les cremades d’abrasió confirmen que ha estat a l’espai.

Maqueta de l’Estació Espacial Internacional

Continuant amb la visita, arriben a la gran maqueta que penja del sostre de l’Estació Espacial Internacional (ISS). S’hi veuen dues naus Soiuz connectades, els diversos mòduls, els panells solars. No tenim consciència de la seua magnitud. La ISS és una estació espacial modular situada en òrbita al voltant de la Terra a uns 360 km d’alçada. Les estructures i mòduls mesuren un total de 109 m de longitud i 73 m d’ample, i la massa total és d’unes 420 tones. Amb un volum habitable d’uns 916 m³, ja sobrepassa en complexitat tot el que s’ha concebut fins ara. Pot acollir fins a set astronautes permanentment segons les exigències de les missions. S’alimenta pels panells solars més grans que mai s’hagin construït, d’una potència de 84 kW.

I pensar que serà abandonada abans del 2030…

Mòdul rus Zvezda de l’Estació Espacial Internacional.

Aquests vista ens serveix per a encetar la nostra següent visita a les còpies a grandària natural del  mòdul rus Zvezda (estrella) i de l’europeu Columbus. En entrar al Zvezda ens sorprèn una icona de la Mare de Déu de Kazan. Tot d’armariets amaguen, en la ISS, experiments, eines, etc… necessaris per al desenvolupament de les missions. L’amplada del mòdul és suficient per caminar dret però no hi ha cap finestra. És un perill potencial i elimina zones de treball. Cal caminar un tros per arribar al mòdul europeu Columbus. I allí just al final trobarem la famosa Cupola incorporada a l’Estació per vigilar els passejos espacials, i l’arribada i partida de les naus. Transportada pel transbordador espacial Endeavour i instal·lada el 2010 és l’indret des d’on els astronautes, en el seu temps lliure, fan les importants fotografies de la Terra nocturna que s’usen per a estudis de contaminació lumínica global.

Visita a la Cupola des d’on admirar la Terra.

Tornant arrere trobarem un dels vàters de l’Estació. En un ambient de microgravetat les miccions i deposicions han de ser aspirades per a eliminar-les. Una de tantes curiositats que deixen parats els companys que m’acompanyen.

Reproducció a grandària real de l’Eagle, la nau de descens de l’Apollo 11. 1969.

Deixem l’Estació i enfront tenim una reproducció a grandària real de l’Eagle, el mòdul de l’Apollo 11 que arribà a la Lluna el 1969. És curiós que una màquina que sembla tan fràgil, aconseguira la fita humana de portar humans al nostre satèl·lits i retornar-los sans i estalvis. Mentre al fons alguns companys han trobat un simulador de vols i s’ho estant passant d’allò més bé, continue la visita a una sala amb material real relacionat amb material espacial. Allí veurem un tratge espacial rus Orlan portat per l’astronauta neerlandés André Kuipers durant la missió DELTA així com un exemplar d’una gran pedra lunar.

Tratge Orlan de l’astronauta André Kuipers. 2011-2012.

L’hora de visita al centre s’acaba i hem d’eixir de l’exposició. A fora un panell presenta la signatura de tots els astronautes europeus, des les primeres astronautes europees Helen Sharman (britànica, 1991) i Claudie Haigneré (2001, francesa), Samantha Cristoforetti  (2014, italiana), fins al darrer, passant per Pedro Duque (1998, espanyol).

Una visita curta però intensa. És un museu tecnològic imprescindible per conèixer del que som capaços de fer els europeus quan treballem junts. Caldrà tornar-hi amb més temps.

Vista general de l’Space Expo.

Imatges: totes les imatges són d’Enric Marco llevat de la Samantha Cristofereti que és de l’ESA.

Mars Express fa 20 anys

0
Publicat el 11 de juny de 2023

Mars Express video

Per celebrar el 20è aniversari del Mars Express de l’ESA el 2 de juny, i després de mesos de treball d’enginyers i científics per fer-ho possible, l’Agència Espacial Europea (ESA) va realitzar la primera emissió en directe des de Mart. Durant una hora, va ser possible veure el Planeta Roig tan a prop del temps real com ho permetés la velocitat de la llum. Actualment el retard és d’uns 17,25 minuts.

La imatge gif que comença aquest article està formada per la suma de totes les imatges que van ser rebudes durant aquella hora, separades per uns 50 segons de diferència, emeses directament des de la càmera de monitoratge visual (VMC) a bord de l’orbitador marcià ja vell però encara molt productiu de l’ESA. Tingueu en compte el salt de les imatges al mig de l’enregistrament: malauradament, la pluja que es produí a l’estació terrestre de l’ESA a Cebreros, prop de Madrid, va ser la causa de la pèrdua de la telemetria o dades de Mars Express durant un període.

Just abans que es perdera la connexió, apareix una petita taca blanca a la vora de Mart. Això no és cap fenomen marcià, sinó un defecte en part del sensor que fa augmentar la quantitat de llum que arriba als píxels d’aquesta zona. Normalment, el processament d’imatges elimina aquests sorolls i taques, però no s’ha fet ja que s’emetia en directe.

Al petit vídeo es revelen moltes característiques marcianes fascinants.

“Mart s’acosta ara a la temporada d’hivern austral”, explica Jorge Hernández Bernal, que forma part de l’equip de la càmera VMC.

“El casquet polar sud és evident en aquestes imatges, a prop de la nit polar, mentre que el volcà Arsia Mons és present al costat esquerre del planeta. Els núvols orogràfics també són habituals durant aquesta temporada i es formen a mesura que l’atmosfera flueix per muntanyes i vessants volcànics”.

La nau Mars Express fa 20 anys en òrbita al voltant de Mart. ESA.

“A la part dreta de les imatges, hi ha un núvol diferent a prop del casquet polar. Amb la càmera VMC hem estudiat amb detall aquests núvols d’altitud durant el crepuscle i hem trobat que són habituals durant aquesta temporada en aquesta part del planeta”.

El que va començar com una càmera d’enginyeria, amb l’únic propòsit de supervisar el desplegament de l’aterratge Beagle 2, s’ha convertit en un instrument científic que ens ha donat vistes de Mart que d’altra manera serien impossibles, i ara fins i tot en directe.

Fer que això succeís no va ser una tasca fàcil. Per obtenir una visió en directe d’una hora de Mart, la càmera VMC de la nau espacial necessitava una visió del planeta alhora que l’antena de la nau havia d’estar encarada contínuament cap a la Terra per transmetre immediatament les dades. Normalment, les observacions s’emmagatzemen a bord de la nau espacial i s’envien a la Terra en un paquet de dades una vegada que Mars Express aconsegueix visibilitat directa cap a una estació terrestre.

“En general, no és possible apuntar els instruments de la nau espacial a Mart i l’antena de comunicacions a la Terra al mateix temps”, diu James Godfrey, director d’operacions de la nau espacial de Mars Express.

“Però fa unes setmanes, quan estàvem buscant idees sobre com celebrar l’aniversari, ens vam adonar que Mart passaria pel camp de visió de la càmera VMC durant una transmissió de comunicacions i va néixer la idea”.

Mars Express continua en la seua òrbita al voltant de Mart i la càmera de monitorització visual, sobrenomenada la “càmera web de Mart”, encara transmet imatges així. Fes una ullada al seu canal de Twitter @esamarswebcam per trobar un arxiu d’imatges de Mart, però per a noves imatges, trobeu la càmera web de Mars a Flickr i Mastodon.

Del comunicat de l’Agència Espacial Europea. First Mars livestream: the movie. 7 de juny 2023.

 

Europa no anirà a Mart

0

Era d’esperar. La missió ExoMars 2022 que havia d’enviar-se a Mart el setembre pròxim es queda a terra de manera indefinida. La invasió d’Ucraïna ha trencat la majoria de ponts de col·laboració científica i tècnica entre Rússia i Occident i l’exploració espacial també n’ha quedat afectada.

2022 és any d’oposició marciana i, per aprofitar la menor distància al planeta, l’Agència Espacial Europea (ESA) en col·laboració amb Roscosmos, l’agència russa, hauria d’enviar-hi en setembre ExoMars 2022.   Aquesta missió consta del mòdul de descens rus Kazachok que baixaria a la superfície marciana amb l’ús de retrocoets (com va fer la nau xinesa Zhurong l’any passat). Kazachok, a més de ser una estació científica fixa, portaria a bord el robot explorador Rosalind Franklin, en honor a la científica que obtingué la primera imatge de l’estructura del DNA, construït per l’Agència Espacial Europea (ESA), la missió principal del qual seria la cerca de proves de vida passada o present en Mart.

Ahir (17 de març) el Consell general de l’ESA format pels estats membres acordà de manera unànime respecte a la missió ExoMars 2022

  • Reconèixer la impossibilitat actual de dur a terme la cooperació en curs amb Roscosmos per a la missió del robot d’ExoMars amb un llançament el 2022 i ordenar al director general de l’ESA que es prenguen les mesures oportunes per suspendre les activitats de cooperació en conseqüència;
  • Autoritzar el director general de l’ESA a dur a terme un estudi industrial ràpid per definir millor les opcions disponibles per a implementar la missió del robot d’ExoMars.

La missió ExoMars ha tingut problemes des del principi. Començà essent una col·laboració amb la NASA però l’any 2012 aquesta va posar fi a la seua participació a causa de les retallades pressupostàries per tal de pagar l’excés de despeses del Telescopi espacial James Webb.

El 14 de març de 2013, representants de l’ESA i l’agència espacial russa (Roscosmos), varen signar un acord en el qual Rússia es convertia en un soci de ple dret. Roscosmos subministraria els vehicles de llançament Protó amb etapes superiors Briz-M i serveis de llançament, així com un mòdul d’entrada, descens i aterratge addicional portant a bord un robot explorador.  Constaria de dues missions: Exomars 2016, que duria l’orbitador Trace Gas Orbiter (TGO) i el modul de demostració de descens i aterratge Schiaparelli i Exomars 2018 que baixaria el robot Rosalind Franklin. Tanmateix les finestres de llançament del 2018 i del 2020 no es pogueren aprofitar per diversos problemes tècnics amb els paracaigudes que havien de dipositar suaument Rosalind en terra marciana. Tothom esperava que enguany, resolts els problemes i passada la pandèmia, la col·laboració ESA-Roscosmos duria la tecnologia europea i russa per primera vegada a Mart.

Ara la guerra a Ucraïna ho ha llençat tot per l’aire. De moment Roscosmos, vista la negativa de l’ESA a col·laborar, ja ha anunciat que el coet Proton-M/Briz-M reservat que havia d’enlairar ExoMars2022 des del Cosmòdrom de Baikonur al Kazakhstan s’utilitzarà en alguna altra missió. De tota manera el director de Roscosmos, Dimitri Rogozin tampoc va deixar marge per mantenir les relacions, ja que va ordenar el passat 26 de febrer el final de la col·laboració amb els llançaments espacials a la base europea de Kourou, a la Guaiana francesa, i retirà tot el seu personal. Els ànims entre les dues agències espacials no passen pel seu millor moment.

Ara el director general de l’ESA, Josef Aschbacher, té una feina feixuga gairebé impossible. Buscar un nou coet per enviar el robot Rosalind Franklin a Mart i, més difícil encara, trobar una etapa de descens que la deposite suaument en la superfície.

El repte de salvar ExoMars 2022 és pràcticament impossible ja que  Roscosmos col·labora no només amb el coet llançador i l’etapa de descens. També disposa de dos instruments en el robot Rosalind Franklin (ADRON-RM i ISIM) i, a més a més, ha instal·lat una unitat de calor de radioisòtops amb plutoni 238 per a escalfar el ròver en les nits marcianes.

En teoria, es podria buscar un nou llançador, com per exemple un Ariane 6, llançar la missió des del Port Espacial Europeu a Kourou i utilitzar el modul de descens Kazachok sense assistència tècnica russa. Però tanta incertesa fa impossible que la missió s’enlaire en setembre d’enguany aprofitant la màxima aproximació de Mart. Caldria ja esperar les noves finestres de llançament del 2024 o millor encara el 2026.

Realment, tal com pensa Daniel Marin, expert en astronàutica, l’única solució realista per salvar la missió seria esperar que les relacions entre Rússia i Europa milloren i enlairar ExoMars amb un coet Proton-M/Briz-M tal com estava previst. I si això no s’aconsegueix, potser ExoMars es quede a terra per sempre. Seria una veritable llàstima. Tant Europa com Rússia no han aterrat mai a Mart i tots dos hi perden si no s’hi avenen en algun moment del futur.

Més informació:
Adiós a ExoMars 2022. ¿Veremos algún día el rover Rosalind Franklin en Marte? Eureka, Daniel Marin, 17 març 2022.

El instrumento español para buscar vida en Marte se queda en tierra por la guerra en Ucrania, Mónica G. Salomone. SINC. 18 març 2022.

Images:
1. El robot Rosalind Franklin a Mart i al fons el mòdul Kazachok. Recreació. ESA
2. Modul de descens rus Kazachok a Mart portant a bord el robot Rosalind Franklin. Recreació. ESA

Com queda la col·laboració espacial amb Rússia?

0

A hores d’ara la invasió d’Ucraïna per part de les forces armades russes continua endavant. Tot de sancions s’han activat i Rússia ha estat expulsada temporalment del Festival d’Eurovisió, del Consell d’Europa i d’altres organismes internacionals.

I vist això, com queda la col·laboració espacial de la NASA i de l’Agència Espacial Europea (ESA) amb Rússia?

Actualment set astronautes de la NASA, l’ESA i l’Agència Espacial Russa, Roscosmos, es troben a bord de l’Estació Espacial Internacional (ISS, de les inicials en anglès). Els astronautes de la NASA Raja Chari, Kayla Barron, Thomas MarshburnMark Vande Hei, l’astronauta de l’ESA Matthias Maurer i els cosmonautes de Roscosmos Anton Shkaplerov i Pyotr Dubrov treballen conjuntament i pacíficament mentre els seus dirigents es barallen a terra.

El treball col·laboratiu dalt de l’Estació continua com estava previst segons es desprén de la informació de la NASA. Per a dimarts que ve hi ha prevista una eixida extravehicular (passeig espacial) i el començament d’unes recerques sobre càncer.  A més a més és previst que una nau russa Soyuz faça aterrar l’astronauta de la NASA Mark Vande Hei  el 30 de març a Sibèria.

Si bé allà dalt tot va bé, no tot és igual a les seus de les agències espacials. Malgrat que l’administrador de la NASA Bill Nelson i el director general de l’ESA, Josef Aschbacher han declarat que la col·laboració amb Roscosmos no ha de sofrir cap entrebanc i hauria de continuar igual, no pensa el mateix el director de Roscosmos Dimitri Rogozin. Amb unes dures declaracions ha avisat de les conseqüències del boicot a l’alta tecnologia espacial russa que ha insinuat Joe Biden, el president dels EEUU:

Si EE UU bloqueja la cooperació amb nosaltres, qui salvarà la ISS d’una eixida d’òrbita descontrolada o una caiguda sobre EE UU o Europa?

I és que les naus Soyuz russes que hi arriben eleven periòdicament l’Estació ja que aquesta perd altura pel fregament atmosfèric. Sense aquesta ajuda l’Estació cauria descontrolada en pocs anys. A més, fa uns mesos, Roscosmos amenaçà de deixar d’invertir en la ISS el 2025 si no s’alçaven les sancions (per l’annexió de Crimea) que li impedeixen adquirir components electrònics per al programa espacial, mentre que la NASA la voldria conservar almenys fins el 2030.

Avui mateix Rogozin, en resposta a les noves sancions europees, ha ordenat el final de la col·laboració amb els llançaments espacials a la base europea de Kourou, a la Guaiana francesa. De manera que unes 80 persones, tot l’equip tècnic de Roscosmos que s’hi troba allí, abandonarà en les pròximes hores la base espacial.

Rogozin també ha manifestat que, amb les sancions dels EEUU és impossible la col·laboració amb la NASA per a construir la missió Venera-D que hauria de ser llençada el 2029. Es proposa que Roscosmos assumesca tota la missió o que es demane la col·laboració de la Xina.

2022 és any d’oposició marciana i, per aprofitar la menor distància al planeta, l’Agència Espacial Europea (ESA), en col·laboració amb Roskosmos, l’agència russa, hauria d’enviar en setembre la missió ExoMars  que, una vegada arribe al planeta desplegà una estació fixa, Kazachok, i un explorador mòbil en la superfície. El robot explorador, anomenat Rosalind Franklin, en honor a la científica que obtingué la primera imatge de l’estructura del DNA, buscarà proves de vida passada o present en Mart. En principi sembla que, de moment no hi haurà problemes amb la missió ja que tots els components estan construïts i provats. El llançador serà un coet Proton-M/Briz-M que deixarà la Terra des del Cosmòdrom rus de Baikonur.

Actualització 1 de març 2022. Comunicat de l’ESA: Pel que fa a la continuació del programa ExoMars, les sancions i el context més ampli fan que un llançament el 2022 sigui molt poc probable.

Molts anys de col·laboració científica tècnica i científica se’n van per l’aire per la invasió d’Ucraïna. La desconfiança dels dirigents mundials ha estroncat projectes conjunts i l’intercanvi d’informació científica que ens duien a un món millor. Encara que els lligams personals entre el personal de les agències espacials continuaran, els dirigents posaran molts entrebancs a la lliure circulació de les idees. I un món amb gran reptes ambientals i sanitaris no s’ho pot permetre.

Actualització 1 de març 2022

Ahir es reuniren els membres de l’Agència Espacial Europea i firmaren el següent document conjunt:

Deplorem les víctimes humanes i les tràgiques conseqüències de la guerra a Ucraïna. Estem donant prioritat absoluta a la presa de decisions adequades, no només pel bé de la nostra plantilla implicada en els programes, sinó pel ple respecte dels nostres valors europeus, que sempre han modelat fonamentalment el nostre enfocament de la cooperació internacional.

L’ESA és una organització intergovernamental governada pels seus 22 estats membres i durant les últimes dècades hem creat una sòlida xarxa de cooperació internacional, que serveix a la comunitat espacial europea i mundial a través dels seus programes de gran èxit.

Estem aplicant plenament les sancions imposades a Rússia pels nostres Estats membres. Estem avaluant les conseqüències de cadascun dels nostres programes en curs realitzats en cooperació amb l’agència espacial estatal russa Roscosmos i alineem les nostres decisions amb les decisions dels nostres Estats membres en estreta coordinació amb socis industrials i internacionals (en particular amb la NASA sobre l’Estació Espacial Internacional).

Pel que fa a la campanya de llançament dels coets Soyuz des del port espacial europeu de Kourou, prenem nota de la decisió de Roscosmos de retirar la seua plantilla de Kourou. En conseqüència, avaluarem per a cada càrrega útil institucional europea sota la nostra responsabilitat el servei de llançament adequat basat sobretot en els sistemes de llançament en funcionament actualment i els pròxims llançadors Vega-C i Ariane 6.

Pel que fa a la continuació del programa ExoMars, les sancions i el context més ampli fan que un llançament el 2022 sigui molt poc probable. El director general de l’ESA analitzarà totes les opcions i prepararà una decisió formal sobre el camí a seguir pels estats membres de l’ESA.

L’ESA continua supervisant la situació en estret contacte amb els seus estats membres.

Més informació:
Agencia Espacial Europea publica actualización sobre la participación de Rusia en la EEI y las misiones a Marte, divendres 25 de febrer 2022.
Station Gears Up for Spacewalks While Conducting Cancer Research, 24 febrer 2022
“Si EE UU bloquea la cooperación con nosotros, ¿quién salvará a la ISS de una caída sobre Europa?” 25 febrer 2022

Imatge:
La nau russa Soyuz MS-18 es mostra acoblada al mòdul Rassvet de l’Estació Espacial Internacional mentre el complex orbital vola a 426 km per sobre del Canadà a prop de Calgary, Alberta. 14 d’abril de 2021.

La ciència del 2022

0
Publicat el 9 de gener de 2022

En aquest any que comença tot un ventall de projectes científics seran finalment posats en marxa. Diverses publicacions han fet la predicció del que podrem esperar enguany. La lluita contra la pandèmia continuarà durant 2022, el problema del canvi climàtic tornarà a estar present en la nova cimera COP27 a celebrar en Xarm el-Xeikh, Egipte, en novembre, el Gran Col·lisionador d’Hadrons del CERN es posarà altra vegada en marxa i finalment la cursa per retornar a la Lluna agafarà embranzida per posar sobre la superfície la primera dona astronauta. En faré un resum però, com sempre, em centraré més en les activitats que vindran en l’àmbit de l’astronomia i de l’exploració espacial.

Física de partícules

Tothom està esperançat en la posada en marxa del Gran Col·lisionador d’Hadrons del CERN, el laboratori de partícules europeu de Ginebra, aturat des del desembre del 2018 per a treballs de manteniment i actualització. Els instruments més importants ATLAS i CMS han estat millorats i se’ls ha afegit, al seu voltant, noves capes de detectors més sofisticats. S’esperen recollir 40 milions de col·lisions de protons per segon en cada instrument i poder observar així més processos estranys. Els objectius principals d’aquestes millores són obtenir mesures millorades del model estàndard, cerques de la física més enllà del model estàndard (BSM), física del sabor de quarks i leptons pesats, estudis de les propietats del bosó de Higgs i estudis de matèria QCD a alta densitat i temperatura.

Telescopi James Webb

A partir de l’estiu, el gran telescopi James Webb enviat a l’espai el dia de Nadal passat començarà a obtenir les primeres imatges científiques després del desplegament exitós (per ara) i la posada en l’òrbita final en el punt L2 a finals de gener. Els primers mesos de l’any s’utilitzaran per calibrar instruments, alinear espills, en definitiva veure que tot funciona. I després de 6 mesos en l’espai ja podrem gaudir del gran ull explorador. Els seus objectius són conéixer l’univers primitiu, la formació dels planetes i la caracterització dels exoplanetes.

Retorn a la Lluna

El nostre satèl·lit ha deixat d’estar marginat en l’exploració espacial i ara n’és un objectiu prioritari. Tot un esquadró de naus espacials deixaran la Terra enguany per posar-se en òrbita lunar o fins i tot aterrar-hi.

La NASA llançarà finalment Artemis I, la primera prova de les noves missions per tornar a posar humans a la superfície de la Lluna. Aquesta primera missió Artemis I serà el primer test de vol integrat del sistema d’exploració de l’espai profund de la NASA. Consta de la nau Orion, el gran coet de llançament (Space Launch System, SLS) que l’enlairarà de la Terra, li permetrà circumval·lar la Lluna i la retornarà en un amaratge suau al Pacífic.

La NASA també llançarà l’orbitador  CAPSTONE per fer experiments per preparar la construcció de la primera estació espacial en òrbita lunar, la Gateway. Construïda per socis comercials i internacionals aquesta estació és necessària per a una exploració sostenible de la Lluna i un model per a futures missions a Mart.

La Índia amb la missió Chandrayaan-3 tornarà a intentar aterrar suaument sobre la Lluna. Aquesta vegada durà, a més, un ròver. Japó s’afegirà també enguany a l’exploració lunar amb la missió SLIM que tractarà també d’aterrar.

Després de molts anys, Rússia retorna a la Lluna tractant de rememorar els èxits de l’etapa soviètica. Ara amb la missió Luna 25 aterrarà suaument en col·laboració amb l’Agència Espacial Europea (ESA) que participa tant en la nau com amb el mòdul d’aterratge. A més la ESA proporcionarà una petita càmera de demostració Pilot-D a la missió, càmera de prova per a futures missions més sofisticades a la Lluna de Rússia/Europa.

Korea Pathfinder Lunar Orbiter (KPLO)

Corea del Sud s’embarca també en la cursa lunar per primera vegada amb un orbitador lunar, el Korea Pathfinder Lunar Orbiter (KPLO). Està previst que es llançarà el juliol de 2022 per orbitar la Lluna durant 1 any amb una sèrie d’experiments de Corea del Sud i un instrument construït als Estats Units. Els objectius són desenvolupar tecnologies d’exploració lunar autòctones, demostrar la viabilitat d’una “internet espacial” i dur a terme investigacions científiques de l’entorn lunar, la topografia i els recursos, així com identificar llocs potencials d’aterratge per a futures missions.

Finalment el Emirats Àrabs Units continuaran el seu programa espacial amb ròver lunar Rashid que viatjarà dins del mòdul d’aterratge Hakuto-R construït per una empresa privada japonesa.

Cap a Mart en la nova oposició

2024 és any d’oposició marciana i, per aprofitar la menor distància al planeta, l’Agència Espacial Europea (ESA), en col·laboració amb Roskosmos, l’agència russa, enviarà en setembre la missió ExoMars  que, una vegada arribe al planeta desplegà una estació fixa, Kazachok, i un explorador mòbil en la superfície marciana. El robot explorador, anomenat Rosalind Franklin, en honor a la científica que obtingué la primera imatge de l’estructura del DNA, buscarà proves de vida passada o present en Mart. Diversos problemes tècnics amb els paracaigudes que havien de dipositar suaument Rosalind en terra marciana van ajornar el seu llançament previst en 2020.

Imatges:

1.- Impulsat per quatre motors RS-25 i propulsors de coets sòlids bessons, el coet Space Launch System (SLS) de la NASA produeix 8,8 milions de lliures d’empenta per impulsar les missions Artemis de l’agència a la Lluna. NASA/Bailey Collins

El telescopi espacial James Webb s’enlaira

0

Finalment el nou Telescopi Espacial James Webb s’ha enlairat sense problemes des de la base espacial europea de Kourou a la Guaiana francesa. El telescopi espectacular de 6,5 metres de diàmetre que ha de revolucionar l’astronomia del segle XXI marxa ara cap a la seua destinació al punt L2, situat a uns 1 500 000 km de la Terra.

El camí per al disseny i construcció d’aquest telescopi ha estat llarg i atzarós. Es començà a pensar l’any 1989, fins i tot abans de l’enlairament del telescopi espacial Hubble el 1990. Amb un pressupost inicial de 500 milions de dòlars i un llançament previst per al 2007, les dificultats de la realització del projecte inicial amb moltíssimes innovacions tecnològiques, feren necessari augmentar el pressupost a 1000, després a 2000, a 5000 milions i retardar la posada en l’espai de la missió. Fins i tot va patir una possible cancel·lació per part del Congrés dels EEUU. Amb l’arribada de la col·laboració de l’Agència Espacial del Canadà i de l’Agència Espacial Europea (ESA) es va poder sortejar el tràngol financer i poder arribar finalment al dia d’avui en que hem pogut veure partir la nau Ariane 5 amb un preciós contingut en la punta. Així i tot, la missió global ha costat quasi 11000 milions de dòlars, dels quals el 15% han estat finançats per l’ESA.

El telescopi James Webb dins del coet Arianne 5. Arianespace/ESA/NASA

Però, què fa aquest telescopi tan especial?  És un observatori espacial dissenyat per observar les primers objectes que es formaren al Cosmos. Per això, ha de penetrar ben profundament en l’espai-temps i, donada l’expansió de l’Univers, com aquestes estrelles i galàxies primigènies estan corregudes cap al roig, la millor manera de detectar-les és veure-les amb l’ús de detectors d’infraroig. A més a més el nou telescopi podrà esbrinar les propietats de les atmosferes dels exoplanetes i, potser, descobrir-hi signes de vida.

The sunshield protects the telescope from external sources of light and heat (like the Sun, Earth, and Moon). NASA.

El telescopi espacial James Webb consta d’un espill de 6,5 metres de diàmetre. Donat que no hi cap llançador en el que càpia sencer, s’ha d’hagut de construir en peces, amb 18 espills independents, que s’han llençat plegats i com un origami es desplegaran a l’espai, en una llarga maniobra que durarà dies, per formar l’espill global final. Un centenar de sensors darrere dels espills faran que la forma i l’enfocament siga els correctes durant tota la vida útil del telescopi. A més a més, el telescopi està protegit de la radiació solar per 5 capes de material aïllant que també ha de viatjar plegat. Tots aquest conjunt, espills i protectors solars, plegats han estat llançats aquest matí dins de la còfia d’uns 5 metres d’amplada d’un coet Ariane 5, part de la contribució de l’ESA al projecte. El desplegament d’aquest conjunt d’espills és un dels més grans maldecaps dels enginyers de la NASA i s’ha de fer durant els pròxims 15 dies, mentre el telescopi viatja cap a la seua destinació final.

Com a fets destacables caldria dir que els miralls estan fets de beril·li, un material resistent i lleuger, i recoberts per una finíssima capa de només 700 àtoms d’or que els dona una reflectivitat d’un 98% sobre una estructura composta de grafit-epoxi.

Un telescopi d’infraroig com aquest ha d’estar refrigerat per a que no detecte fotons tèrmics de fons pròpies, com ara els instruments del telescopi mateix, i, a més a d’estar protegit dels calors emesos pel Sol i la Terra. Com que la temperatura d’operació dels instruments serà de 60 K (-213 ºC), és necessari el desplegament protectors solars, cinc immensos para-sols de polímer recobertes d’alumini per protegir-los del calor i la llum del Sol i de la Terra, que farà que la temperatura en el para-sol exterior de 125º es reduesca en el para-sol més intern a només -235 ºC.

El mòdul d’instrumentació del telescopi inclou els següents instruments:

  • Càmera d’infrarojos pròxims o NIRCam – proporcionada per la Universitat d’Arizona
  • Espectrògraf d’infrarojos pròxims, o NIRSpec – proporcionat per l’ESA, amb components proporcionats per la NASA/GSFC.
  • Instrument d’infrarojos mitjans, o MIRI – proporcionat pel Consorci Europeu amb l’Agència Espacial Europea (ESA) i pel Jet Propulsion Laboratory de la NASA (JPL)
  • Sensor d’orientació fina/Càmera infraroig pròxim i espectrògraf sense escletxes , o FGS/NIRISS- proporcionat per l’Agència Espacial Canadenca
El telescopi James Webb Space podrà estudiar cada fase de la història còsmica de l’Univers. NASA

Els objectius científics del telescopi James Webb se centraran en l’estudi de:

Univers primerenc

Webb serà una poderosa màquina del temps amb visió infraroja que mirarà enrere durant els 13.500 milions d’anys d’història de l’Univers per veure com les primeres estrelles i galàxies es formaren a partir de la foscor de l’univers primerenc.

Galàxies al llarg del temps

La sensibilitat infraroja sense precedents de Webb ajudarà els astrònoms a comparar les galàxies més primerenques i febles amb les grans espirals i el·líptiques actuals, ajudant-nos a entendre com s’assemblen i evolucionen les galàxies al llarg de milers de milions d’anys.

Cicle de vida de les estrelles

Webb podrà veure dins dels núvols massius de pols opacs als observatoris de llum visible com el telescopi Hubble, on neixen les estrelles i els sistemes planetaris.

Altres mons

Webb ens permetrà conéixer més sobre les atmosferes dels planetes extrasolars i potser fins i tot trobarà els components de la vida en altres llocs de l’univers. A més d’altres sistemes planetaris, Webb també estudiarà objectes dins del nostre propi Sistema Solar.

Desplegament del telescopi durant el seu viatge al punt L2. NASA

El telescopi espacial James Webb se situarà en el punt d’estabilitat gravitatòria L2, a 1,5 milions de quilòmetres de la Terra. Aquesta situació és ideal per a un observatori que mire en el infraroig, llum de la influència calorífica de la Terra i protegit de la llum i calor del Sol pels para-sols. El problema és que qualsevol problema que tinga el telescopi no podrà ser reparat per astronautes com es va fer amb el telescopi Hubble en quatre ocasions.  Durant  15 dies Webb viatjarà desplegant el telescopi i corregint la trajectòria fins arribar a la seua destinació L2. Després caldrà configurar el telescopi i els instruments. Es preveu que fins a començament de l’estiu del 2022 no es faran les primeres imatges científiques.

Mentrestant Webb va desplegant el telescopi com un origami. Centenars de moviments ben provats posaran finalment a l’abast dels astrònoms el millor instrument que ha construït la humanitat per esbrinar els indrets més llunyans i antics de l’Univers.

Més informació:

James Webb Telescope: Media Kit.

Imatges:

1.- Enlairament del James Webb Telescope amb un Ariane 5 des de Kourou.

Ciència i feminisme

0
Publicat el 8 de març de 2021

Pols d’estels s’afegeix a les reivindicacions de les dones i reprodueix l’article de Susanna Ligero, traductora i periodista de la revista Mètode.

Ciència i feminisme

Susanna Ligero Tormo, periodista i traductora

Des de 2016, el 8 de març ve precedit d’una nova data rellevant en la lluita per la igualtat de les dones: l’11 de febrer. A finals de 2015, l’ONU el va assenyalar com el Dia Internacional de la Dona i la Xiqueta en la Ciència. Com tots els «dies de» oficials, es tracta d’un gest institucional per a reconéixer una lluita i donar-hi suport; en aquest cas, l’esforç de tantes investigadores pioneres per a denunciar l’accés limitat de les dones a l’eina fonamental de la humanitat per a conéixer el món on viu: la ciència. Com tots els dies de», potser per si sol no li veiem la utilitat, però té el seu valor com un node més de la xarxa d’iniciatives feministes que tracten de millorar les vides de les dones arreu del món.

Segons l’informe Desxifrar el codi: L’educació de les xiquetes i les dones en ciències, tecnologia, enginyeria i matemàtiques (STEM), editat per la Secció d’Educació de la UNESCO en 2019, només el 28% de les persones dedicades a la investigació en el món són dones (i tenint en compte que es tracta d’una mitjana, podem endevinar diferències abismals entre països). Aquest percentatge no només és baix, sinó que potser disminuïx en els anys vinents. Segons l’ONU, la pandèmia de la covid-19 ha impactat negativament en les dones científiques i «ha afectat especialment les que es trobaven en els inicis de les seues carreres», el que fa preveure que la bretxa de gènere en l’àmbit científic probablement tornarà a eixamplar-se. Un nou daltabaix en una història que no ha estat mai tan progressiva com ens agradaria pensar.

Deixar les dones fora de la ciència durant tant de temps ha empobrit la ciència. Estudis esbiaixats que han pres l’home com a mesura de la humanitat; dinàmiques de treball que han omés sistemàticament les cures; estereotips nascuts d’una medicina misògina i parcial; balafiament de talent al llarg de la història… Alhora, i òbviament, deixar les dones fora de la ciència ha empobrit les dones. Les ha privades de coneixement i de riquesa, i també de saber-ne tota la història: aquelles que sí que van aconseguir ser científiques, fins i tot les que van fer-hi grans contribucions, han estat invisibilitzades, ficades al sac de l’anècdota i l’excepció. Què fem per a garantir que això no continue passant?

Com a moviment social transformador, el feminisme hi ha jugat un paper clau i ho continuarà fent. El feminisme ha enriquit la ciència: ha aportat la perspectiva de gènere a les ciències naturals i a les socials, ha qüestionat paradigmes mandrosos i ha rescatat referents de totes les àrees de coneixement. Ha fet palés, també, que els grans descobriments rarament han sorgit d’un únic cap pensant (normalment masculí), sinó que solen ser el resultat de la col·laboració i del saber compartit.

Descórrer la cortina

El feminisme és un visibilitzador de realitats; és la mà que descorre la cortina i ens permet veure ben bé que està ocorrent a l’altra banda de la finestra. Per això, en molts àmbits, incloent-hi el món de la recerca, no s’acaba de pair bé. Resulta incòmode que es publiquen articles que assenyalen que entre març i abril de 2020, durant els mesos més durs de confinament, les dones investigadores han publicat menys articles científics que els seus companys. No agrada que es diga que l’actual model de recerca i publicació científica esgota els cossos, i fa incompatible el rendiment esperat amb una vida familiar plena (no parlem de la social, íntima…). Tot això no resulta coherent amb el relat d’un món que se suposa que tracta de ser més just, però al qual ja li va bé que les que han estat a primera línia de la pandèmia siguen expulsades del sistema, de nou.

I, si ens hi fixem, moltes d’aquestes observacions són fruit justament d’una conjuminació entre mirada feminista i pràctica científica, d’investigadores que incorporen la perspectiva de gènere al mètode científic per a analitzar la realitat de forma més acurada. Cal que no oblidem que la ciència ha estat una activitat tradicionalment incòmoda, també reveladora de realitats que no encaixen amb els interessos de les classes dominants. És clar, existeix la tecnociència enamorada del benefici i d’un malentés progrés, practicada per «visionaris» que fa temps que no toquen de peus a terra, pròspers en un context de capitalisme esbojarrat. Però és la recerca científica (sobretot la finançada amb recursos públics) la que, cada vegada amb més proves, evidencia els profunds reptes ambientals a què ens aboca el model econòmic de creixement infinit. És la ciència la que ha demostrat que la contaminació atmosfèrica ens mata; que la invasió per part de la humanitat dels espais naturals ens exposa a nous perills; que el canvi climàtic no farà més que agreujar les desigualtats socials ja existents, també entre dones i homes.

Per a tots aquests problemes, necessitem solucions que han de vindre necessàriament d’un exercici radical de pensament crític arrelat a la realitat, a la vida. Tot i ser diferents en essència, tant la ciència com el feminisme proposen aquesta aproximació al món. Aprofitem-ho

Publicat prèviament a la revista de la Intersindical Valenciana
CIÈNCIA I FEMINISME, Susanna Ligero, Març 2021. pàgina 8

Imatges:

1.-NASA Goddard Hosts Young Women for STEM Girls Night In
NASA/Goddard/Debbie Mccallum
2.-Your space agency needs YOU: ESA astronaut applications are opening, ESA

El telescopi Hubble fa 30 anys

0
Publicat el 25 d'abril de 2020

La nostra visió actual de l’univers és molt diferent de la que teníem quan érem infants. Durant aquest temps han millorat molt els nostres mitjans d’observació, s’han divulgat més i millor els descobriments seguint el model que impulsà Carl Sagan amb el magnífic Cosmos, cosa que ha estat possible per la implantació d’internet a tot el món. Però, res d’això és comparable al panorama còsmic i intel·lectual que ens ha deixat el telescopi espacial Hubble que aquests dies celebra 30 anys a l’espai.

El 24 d’abril de 1990, el telescopi espacial Hubble era llançat a l’espai des del Centre Espacial Kennedy de la NASA a Florida a bord del transbordador Discovery, amb la tripulació formada pels astronautes Loren J. Shriver, Charles F. Bolden Jr., Bruce McCandless II, Steven A. Hawley i Kathryn D. Sullivan en la que seria la missió ST-31 del programa dels transbordadors espacials de la NASA

Un dia després, ja en òrbita, la bodega de càrrega s’obrí i, amb l’ajuda del braç robòtic, el telescopi fou desplegat en òrbita terrestre. A partir d’aquell moment el telescopi va obrir una nova visió del cosmos que ha estat transformadora per a la nostra civilització.

Fa cinc anys, quan el telescopi complí 25 anys a l’espai, vaig fer un extens article amb les seues principals contribucions a l’astronomia moderna, per la qual cosa no cal tornar a explicar-ho.

Hubble ha revolucionant l’astronomia moderna, no només per als científics, sinó que també ha conduït la societat sencera en un viatge meravellós d’exploració i descobriment de l’univers.  A diferència de qualsevol telescopi espacial anterior, Hubble va fer que l’astronomia fos rellevant, atractiva i accessible per a persones de totes les edats. Les imatges icòniques del telescopi espacial han redefinit la nostra visió de l’univers i del nostre lloc en el temps i l’espai.

Hubble ens ha proporcionat visions impressionants sobre l’univers, des dels planetes propers fins a les galàxies més allunyades que hem vist fins ara“, ha dit Thomas Zurbuchen, administrador associat per a la ciència a la seu de la NASA a Washington, DC. “Llançar un telescopi tan gran va ser revolucionari fa ara 30 anys. I aquest centre neuràlgic de l’astronomia continua oferint ciència revolucionària avui en dia. Les seues espectaculars imatges han captat la imaginació durant dècades i continuaran inspirant la humanitat durant els propers anys “.

Sense la càrrega molesta de l’atmosfera turbulenta de la Terra, l’observatori espacial ens permet conèixer l’univers amb una nitidesa cristal·lina sense precedents en una àmplia gamma de longituds d’ona, des de la llum ultraviolada dels fenòmens violents fins als infrarojos de la formació estel·lar .

Els principals descobriments de Hubble inclouen la mesura de la velocitat d’expansió i acceleració de l’univers; la troballa que els forats negres són comuns entre les galàxies; la caracterització de les atmosferes dels planetes al voltant d’altres estrelles; l’observació dels canvis meteorològics en els planetes del nostre sistema solar; i la mirada cap enrere en el temps a través del 97% de l’univers per registrar el naixement i l’evolució de les estrelles i les galàxies.

Amb Hubble s’han fet fins ara 1,4 milions d’observacions i ha proporcionat les dades necessàries per que astrònoms de tot el món escrigueren més de 17.000 publicacions científiques revisades, i, d’aquesta manera, s’ha convertit en l’observatori espacial més prolífic de la història. Les seues dades guardades als arxius continuaran alimentant les futures investigacions en astronomia durant les properes generacions.

La longevitat de Hubble es pot atribuir a les cinc missions de manteniment dels transbordadors espacials, des de de 1993 fins a 2009, en què els astronautes van actualitzar el telescopi amb instruments cada vegada més avançats, nova electrònica i algunes reparacions en òrbita. Des de fa 11 anys, però, cap missió ha revisat o canviat cap instrument. Els enginyers que controlen el Hubble ha tingut ja alguns ensurts amb les càmeres i amb els giroscopis que permeten apuntar el telescopi a l’objecte celeste desitjat. Així i tot, s’espera que el venerable observatori, amb la seua suite de càmeres i altres instruments, continue operatiu durant la dècada dels 20, tot esperant el proper telescopi espacial James Webb.

El Telescopi Espacial Hubble és un projecte de cooperació internacional entre la NASA i l’ESA (l’Agència Espacial Europea). El Centre de Vol Espacial Goddard de la NASA a Greenbelt, Maryland, gestiona el telescopi. L’Institut de Ciències del Telescopi Espacial (STScI) de Baltimore realitza operacions de ciència de Hubble. STScI està operat per la NASA per l’Associació d’Universitats per a la Recerca en Astronomia de Washington, D.C.

A partir de l’article: Hubble Marks 30 Years in Space With Tapestry of Blazing Starbirth, Claire Andreoli, Donna Weaver / Ray Villard.

Imatges;

1.- Per commemorar els 30 anys del telescopi espacial Hubble, s’ha presentat una imatge que s’assembla a una versió còsmica d’un món submarí ple d’estrelles. La nebulosa roja gegant (NGC 2014) i la seua veïna blava més petita (NGC 2020) formen part d’una vasta regió de formació estel·lar al Gran Núvol de Magalhães, una galàxia satèl·lit de la Via Làctia, situada a 163.000 anys llum. NASA, ESA i STScI
2 i 3.- Telescopi Espacial Hubble. NASA

BepiColombo ens visita de camí a Mercuri

3
Publicat el 10 d'abril de 2020

Malgrat la pandèmia les operacions a l’espai continuen. Les lleis de la física són inalterables i les maniobres necessàries de les naus espacials s’han de fer, tant si com no.

I aquesta matinada ens ha passat fregant la nau europea-japonesa Bepi-Colombo, enviada cap a Mercuri el 2018, que ha realitzat una maniobra d’assistència gravitatòria amb la Terra. Serà l’única visita a la Terra, però en farà dues més amb Venus i cinc amb Mercuri, per arribar finalment a situar-se en òrbita al voltant del primer planeta del sistema solar a finals del 2025.

Sembla estrany que, si es vol fer arribar una nau cap a un planeta llunyà, siga necessari fer-lo voltar amunt i avall del sistema solar per assolir el seu objectiu final. Per què no enviar-la directament al planeta?

Representació artística de la missió  BepiColombo, amb els orbitadors que du, el Mercury Planetary Orbiter (ESA, esquerra) i el Mercury Magnetospheric Orbiter (JAXA, dreta)

Les trajectòries que segueixen els vehicles espacials depenen de dos variables fonamentals: de l’atracció gravitatòria dels cossos celestes que els atrauen i de la velocitat que poden assolir aquests vehicles.

Sabem que una missió enviada a l’espai necessita un gran coet per enlairar-se i allunyar-se de la influència del camp gravitatori terrestre. Però una vegada a l’espai la velocitat ve donada per l’impuls inicial. Si la velocitat és baixa, d’uns 8 km/s, quedarà en òrbita terrestre, si és més alta, major d’un 11,2 km/s (uns 40.000 km/h) aconseguirà fugir de la Terra.

Tanmateix amb aquesta velocitat no aconseguirà fugir del sistema solar ja que finalment quedarà en una òrbita al voltant del Sol. I en aquesta òrbita es quedarà eternament si no s’hi aplica alguna força externa. La nau té massa energia i ha de perdre velocitat per acostar-se a Mercuri, per exemple. Així que, per aproximar-se als planetes interiors, ha de reduir la seua velocitat i energia i “deixar-se caure” cap al Sol. En absència de fregament, la única manera de fer-ho és engegar uns propulsors que, projectats en la direcció del seu moviment, el frenen.

I, aquí està el cul de sac de les missions espacials. Els propulsors necessiten molt de combustible per fer aquestes maniobres de correcció de trajectòria. Un combustible que faria augmentar la massa del vehicle de manera desproporcionada i convertiria les missions espacials en impracticables. Com sabem per la segona llei de Newton: Força = massa x acceleració, és a dir, a més massa, més força, més combustible, és necessària per variar l’acceleració de la nau.

Com s’ha aconseguit resoldre aquest coll d’ampolla de l’exploració espacial?

Sembla que va ser el matemàtic i enginyer ucraïnès Yuri Kondratyuk el primer que suggerí, ja el 1918, que una nau espacial podria aprofitar la gravetat dels planetes per accelerar o frenar-ne la trajectòria, però això no es va poder provar fins a que va ser possible enviar missions més enllà de la Terra.  I fou el matemàtic italià Bepi Colombo el qui proposà, el 1970, fer una delicada aproximació de la nau de la NASA Mariner 10 a Mercuri per que hi retornarà sis mesos més tard. Dues visites en lloc d’una de programada.

I aquesta matinada passada, quan el Sol estava a punt d’eixir per a nosaltres, la missió BepiColombo passà a uns 12.700 km de la superfície de la Terra. Amb aquesta delicada maniobra la nau ha aconseguit perdre uns 5 km/s de velocitat, amb la qual cosa la nova òrbita està ara més tancada al voltant del Sol. Evidentment, com que l‘energia total del sistema Terra-BepiColombo s’ha de conservar, l’energia perduda per la nau ha estat guanyada per la Terra, però aquesta és tan massiva que això no representa cap problema.

La nau espacial BepiColombo, en el seu llarg camí cap a Mercuri, encara realitzarà 8 assistències gravitatòries més per reduir la velocitat: dues a Venus (a l’octubre del 2020 i l’agost del 2021), i 6 més a Mercuri, a partir d’octubre del 2021, abans de la inserció final de l’òrbita el desembre del 2025.

BepiColombo és una missió conjunta de l’Agència Espacial Europa (ESA) i de l’Agència Espacial Japonesa (JAXA). La missió posarà en òrbita dos orbitadors: el Mercury Planetary Orbiter (ESA) i el Mercury Magnetospheric Orbiter (JAXA) i tractaran d’estudiar en detall el planeta més pròxim a la Terra. Ja en parlarem.
BepiColombo Earth Flyby Una explicació més detallada de la meravella de l’assistència gravitatòria. ESA
Imatges:

1, 3 – La Terra capturada per una de les càmeres selfie de BepiColombo poc abans de l’aproximació. ESA / BepiColombo / MTM, CC BY-SA 3.0 IGO
2.- BepiColombo. NASA. Mercury Planetary Orbiter and Mercury Magnetospheric Orbiter. Wikipedia Commons.
4.- Assistència gravitatòria per reduir la velocitat de BepiColombo. De BepiCombo Earth Flyby. ESA
5.- Objectius de BepiColombo. ESA.

La COVID-19 afecta l’exploració de l’espai

6

La pandèmia de la malaltia COVID-19 causada pel coronavirus SARS-CoV-2 està afectant a la població mundial. Sense vacuna de moment, només mesures preventives són efectives com el confinament total o parcial de la població. A hores d’ara es calcula que un 38% de la humanitat està sota regim d’aïllament a casa i sense contacte amb altres humans llevat de la família pròxima.

Aquesta frenada brusca de les relacions socials a tot el planeta per lluitar contra un enemic comú és una novetat. Aquesta desacceleració de l’economia, dels viatges, i del foment de les relacions virtuals serà una prova del que segurament caldrà fer en un futur pròxim per evitar el col·lapse de la humanitat per causa del canvi climàtic.

Un sector que està també afectat per la pandèmia és l’espacial. Tots els grans centres espacials estan sota mínims o simplement tancats fins que passe tot. La por a que personal altament especialitzat i difícilment substituïble quedara infectat del virus ha portat a solucions dràstiques.

Un Ariane 5 despega del Centre Espacial Europeu de la Guaiana.

Ja fa uns 10 dies que el Centre Espacial de la Guaiana (CSG)  a la Guaiana Francesa, des d’on es llancen principalment els satèl·lits de l’Agència Espacial Europa (ESA) amb els coets europeus Ariane, va decidir evitar nous llançaments i ajornar tots els vols programats fins a nova ordre.

Tanmateix molts d’aquestes missions ja es trobaven en la cua per ser enviades a l’espai. És per això que l’empresa europea Arianespace, l’agència espacial francesa CNES i totes les companyies relacionades amb el CSG estan ara mateix supervisant operacions per situar coets i satèl·lits en condicions segures.

ESA redueix les operacions de les missions científiques enmig de la pandèmia

En resposta a la pandèmia de coronavirus que no s’atura, l’Agència Espacial Europea (ESA) ha decidit reduir encara més el personal a l’interior del seu Centre de Control (ESOC) de missions a Darmstadt, Alemanya.

Els nous ajustaments han requerit aturar temporalment l’operació d’instruments i la recollida de dades en quatre missions científiques del Sistema Solar, que formen part de la flota més àmplia de 21 naus espacials que actualment està volant per a l’Agència i que són controlades des del Centre Europeu d’Operacions Espacials (ESOC) a Darmstadt.

Solar Orbiter. ESA/ATG medialab

Aquestes mesures han afectat la missió científica Cluster (4 naus en òrbita solar per estudiar el vent solar en 3D),  ExoMars Trace Gas Orbiter (TGO, mesura del metà de Mart), Mars Express (imatges de la superfície marciana) i Solar Orbiter (missió al Sol, amb participació valenciana i catalana) que han estat situades en espera. Aquests ajustaments suposen apagar els instruments científics en aquestes naus espacials i situar-los en una configuració segura de manera que necessitaran poca o cap intervenció humana des de terra. ESA controlarà les condicions en evolució per planificar el futur reinici de les operacions científiques.

ESA va implementar de forma precoç mesures de mitigació del risc. La gran majoria de la mà d’obra de l’ESA treballarà en teletreball durant gairebé dues setmanes. Només el personal clau que realitza tasques crítiques, que inclou el manteniment de les operacions espacials en temps real, seguirà present als establiments d’ESA de tota Europa.

Tempesta Gloria. Met-11 Airmass RGB, 21 gener 2020 09:00 UTC. EUMETSAT.

EUMETSAT,  l’altre centre de control de satèl·lits que s’encarrega, entre d’altres coses, d’enviar les fotografies dels satèl·lits METEOSAT i que té la seu central a Darmstadt, a l’altra banda del carrer on hi ha ESOC també ha quedat afectat per les restriccions de la COVID-19. I com els altres companys d’ESA, NASA i d’altres centres de recerca, estan experimentant algunes dificultats per mantenir tots els sistemes en marxa.

NASA prioritza projectes

El mateix està fent l’agència espacial nord-americana NASA. La direcció ha avaluat les missions i projectes per veure quines poden ser fetes remotament i quines han de ser fetes presencialment. Encara que la majoria de tasques poden fer-se des de casa i el treball no minvarà, algunes hauran de fer-se de manera precisa ja que son missions crítiques.

D’elles dues missions són fonamentals per a la NASA: la Mars 2020, la missió d’exploració marciana que ha de ser enviada en la finestra de llançament d’enguany i el gran telescopi James Webb que, després de múltiples retards i pressupostos desorbitats, hauria de ser llançat l’any que ve.

Rover Perseverance de la NASA en la superficie de Mart. NASA/JPL-Caltech

La missió Mars 2020 de la NASA, que inclou el vehicle de superfície Perseverance i l’helicòpter Mars, és una prioritat màxima per a l’agència, i, per tant, les preparacions del llançament i el mateix llançament no s’ajornaran. Si no s’aprofita la finestra de llançament de finals d’any quan Mart està més pròxim, caldrà esperar dos anys. En aquests treballs bona part de la feina la fan treballadors i contractistes que treballen de forma remota a l’agència. Tanmateix hi ha treballs que s’estan fent al Jet Propulsion Laboratory a Pasadena, Califòrnia, que caldrà mirar amb cura sobretot després del confinament decretat  pel governador de Califòrnia.

Una altra cosa és el James Webb Space Telescope. La construcció i assemblatge d’aquest gran telescopi que ha de substituir el vell telescopi espacial Hubble, que du ja 30 anys a l’espai, és un veritable mal de cap per a la NASA. Ara, com que es construeix a Califòrnia, ha de suspendre les operacions d’integració i proves. Les decisions es podrien ajustar a mesura que la situació evolucione. La decisió es va prendre per garantir la seguretat de la mà d’obra. L’observatori roman en seguretat en un entorn net. La previsió de llançament era el març del 2021. Ja veurem si es pot complir o es torna a ajornar com ja ha passat diverses vegades.

Respecte al control dels astronautes actualment en òrbita, Andrew Morgan, Oleg Skripochka i Jessica Meir actualment en l’Estació Espacial Internacional, continua el suport a les seues tasques diàries. No se’ls pot abandonar com passà amb el cosmonauta Sergei Krikalev, que visqué la caiguda de la URSS des de l’espai. Els controladors treballen des del Centre de Control de Missions del Centre Espacial Johnson de Houston, on, des de primeries de març ja es van prendre diverses mesures dràstiques per reduir el risc de contagi de l’equip format per personal altament especialitzat.

A més a més, el proper 9 d’abril s’han de llançar des del cosmòdrom de Baikonur al Kazakhstan  l’astronauta de la NASA Chris Cassidy i els cosmonautes russos Anatoly Ivanishin i Ivan Vagner que hi romandran fins a l’octubre del 2020. Un protocol molt sever de les agències espacials evita que els astronautes pugen malalties a l’Estació Espacial Internacional com un refredat o una grip. Com en tots els llançaments amb tripulacions, aquestes han de romandre en quarantena dues setmanes abans de llançar-les. Aquest procés garanteix que no estiguin malalts ni incuben una malaltia quan arribin a l’estació espacial. Per aquesta banda, per tant, no pujaran el coronavirus SARS-CoV-2 a l’espai.

En definitiva, l’espai també ha quedat afectat per la malaltia, per la mort i per la paràlisi de la humanitat.

Actualització:

Els telescopis més grans del món també tanquen a causa de la pandèmia.

COVID-19 forces Earth’s largest telescopes to close    Astronomy, 7 abril 2020.

More than 100 of Earth’s largest telescopes are now closed, and astronomers are worried about the pandemic’s long-term impacts on their field.

Imatges:

1.- Main Control Room / Mission Control Room of ESA at the European Space Operations Centre (ESOC) in Darmstadt, Germany.
2.- L’enginyer de la NASA, Ernie Wright, observa els primers sis segments dels 18 que formaran el mirall del telescopi James Webb, preparats per començar les proves criogèniques finals al Marshall Space Flight Center de la NASA. NASA / MSFC / David Higginbotham.

Solar Orbiter fa les primeres mesures

0

Solar Orbiter, la nova sonda de l’Agència Espacial Europea (ESA) per a l’exploració del Sol, va ser llançada sense problemes el passat dilluns 10 de febrer, des de Cap Canaveral a Florida i ara viatja cap a la nostra estrella. Serà un llarg viatge ja que per assolir la seua meta necessitarà una assistència gravitatòria de la Terra i diverses de Venus per a que d’aquesta manera poder sortir del plànol de l’eclíptica i explorar els pols solars.

Solar Orbiter porta a bord un conjunt de 10 instruments, alguns d’ells per fer mesures in situ  i d’altres de teledetecció per observar la superfície solar turbulenta, l’atmosfera exterior calenta del Sol i els canvis del vent solar. Els instrumentes de teledetecció obtindran imatges d’alta resolució de l’atmosfera del Sol (la corona) i del disc solar. Els instruments in situ mesuraran el vent solar i el camp magnètic solar als voltants de l’òrbita.

Els quatre instruments in situ mesuren ara mateix les propietats ambientals al voltant de la nau, especialment les característiques electromagnètiques del vent solar, el corrent de partícules carregades que allibera el Sol. Tres d’aquests instruments in situ compten amb sensors en el braç de 4,4 m de llarg.

“Mesurarem valors de camps magnètics milers de vegades més petits que els que coneixem a la Terra -assenyala Tim Horbury, de l’Imperial College de Londres, principal investigador del magnetòmetre (MAG) -. Fins i tot els corrents en els cables elèctrics de la sonda generen camps magnètics molt més grans que els que necessitem mesurar. Per això, els nostres sensors estan instal·lats en un braç, per mantenir-los allunyats de l’activitat elèctrica de la nau “.

Les dades recollides amb l’instrument MAG durant el desplegament del braç de la nau espacial Solar Orbiter de l’ESA mostren com el camp magnètic disminueix des de la proximitat de la nau espacial fins on es despleguen realment els instruments. ESA/Solar Orbiter/MAG.

Els controladors de terra del Centre Europeu d’Operacions Espacials de Darmstadt (Alemanya) van activar els dos sensors del magnetòmetre, un prop de l’extrem de braç i un altre més a prop de la nau, unes 21 hores després de l’enlairament. L’instrument va registrar dades abans, durant i després de desplegar-se el braç, el que va permetre als científics comprendre la influència de la nau en els mesuraments una vegada ja es troba en l’entorn espacial.

Solar Orbiter es comunica amb la Terra unes 10 hores al dia, actualment des del l’estació de Cebreros, a prop de Madrid. Dades del 24 de febrer, ja a quasi 7 milions de km de la Terra. ESA

Les dades rebudes mostren com es redueix el camp magnètic des dels voltants de la nau fins al punt on estan desplegats els instruments -afegeix Tim-. Això confirma de manera independent que el braç s’ha desplegat i que els instruments realment proporcionaran en el futur mesuraments precisos “.

Més informació de la missió:
La missió Solar Orbiter de camí cap al Sol

Imatges:

1.- Llençament de Solar Orbiter la matinada del 10 de febrer 2020 des del Kennedy Space Center, Cape Canaveral, Florida, USA. ESA–S. Corvaja.

Publicat dins de El Sol i etiquetada amb , , , | Deixa un comentari

La missió Solar Orbiter de camí cap al Sol

0
Solar Orbiter. ESA/ATG medialab

Aquesta matinada a les 5:03 h. s’ha enlairat des de cap Canaveral a Florida (EEUU) la sonda Solar Orbiter, una missió dirigida per l’Agència Espacial Europea (ESA), amb forta participació de la NASA, per abordar la qüestió central sobre com el Sol crea i controla l’heliosfera, la gran regió de l’espai, en forma de bambolla que envolta el Sol i creada per les partícules energètiques que aquest emet.

Solar Orbiter podrà estudiar detalladament el Sol gràcies a la combinació d’instruments científics amb que va equipat i a l’òrbita que recorrerà al seu voltant. La sonda s’hi acostarà fins a una distància de 42 milions de quilòmetres, més prop que el planeta Mercuri, fet que implica que les parts de Solar Orbiter que miren al Sol hauran de suportar temperatures de més de 500 ºC, mentre que les parts a l’ombra estaran al voltant de -180 ºC. Al llarg de la missió, l’òrbita de la sonda anirà augmentant d’inclinació respecte a l’eclíptica fins a uns 30º, la qual cosa permetrà obtenir per primer cop imatges d’alta resolució dels pols solars.

John Kraus @johnkrausphotos

Un equip de l’Institut de Ciències del Cosmos de la Universitat de Barcelona (ICCUB-IEEC) i un altre del GACE/LPI (Grup d’Astronomia i Ciències de l’Espai, Laboratori de Processat d’Imatges), del Departament d’Enginyeria Electrònica (Escola Tècnica Superior d’Enginyeria) i del Departament d’Astronomia i Astrofísica (Facultat de Física) de la Universitat de València han treballat en el desenvolupament i fabricació de l’instrument PHI (Polarimetric and Helioseismic Imager) que va a bord de la sonda Solar Orbiter.

El PHI (Polarimetric and Helioseismic Imager) proporcionarà mesures d’alta resolució del camp magnètic de la fotosfera solar i mapes de la seua brillantor en l’espectre visible. També produirà mapes de velocitat del moviment del material de la fotosfera que permetrà realitzar recerques heliosísmiques de l’interior del Sol, en concret de la zona convectiva, en la base del qual es crea i reforça el camp magnètic i a través del qual puja a la “superficie” o fotosfera.

John Kraus @johnkrausphotos

L’ICCUB s’ha responsabilitzat de desenvolupar i implementar un sistema d’estabilització d’imatges (ISS) que permetrà compensar els moviments de la sonda per poder obtenir imatges de la qualitat requerida. «Solar Orbiter és la missió solar més completa des del punt de vista instrumental», explica Josep M. Gómez Cama, investigador de l’ICCUB i membre del Departament d’Enginyeria Electrònica i Biomèdica de la UB. Concretament, la sonda disposa de deu instruments que pesen en total 209 quilograms. «La limitació de pes també ha estat un repte a l’hora de dissenyar l’instrument PHI, que pesa uns 30 kg», destaca Gómez Cama. Quatre dels instruments, que permeten la detecció del vent solar (plasma i camp magnètic), radiació i partícules emeses, funcionen in situ, mentre que els altres sis ho fan de manera remota i permeten obtenir imatges en diferents longituds d’ona i fer espectroscòpia de la fotosfera i corona solars.

Pas endavant per a la meteorologia espacial

D’altra banda, els investigadors del Grup de Física Heliosfèrica i Meteorologia Espacial (HPSWG) de la UB han proporcionat suport científic a l’equip del detector de partícules energètiques (EPD) construït per un equip de la Universidad de Alcalá. Els membres de l’HPSWG, experts en modelatge i anàlisi de dades, han desenvolupat models per predir l’entorn de radiació de partícules amb què es trobarà Solar Orbiter, i estan desenvolupant eines per facilitar l’anàlisi de les mesures de partícules que recollirà.

En les seues diverses aproximacions al Sol, la sonda Solar Orbiter orbitarà a una velocitat semblant a la solar la qual cosa permetrà fer el seguiment continuat d’una zona activa del Sol durant un llarg temps i planificar campanyes específiques de manera remota. Segons Àngels Aran, investigadora del grup HPSWG, «els resultats obtinguts per Solar Orbiter permetran entendre la física que connecta l’estrella amb el medi interplanetari i ajustar així els models actuals de meteorologia espacial». «A més —afegeix la investigadora—, la combinació d’observacions de Solar Orbiter amb les dades obtingudes des d’altres sondes situades a l’espai interplanetari, com a l’entorn terrestre, ens donarà una visió en estèreo del mateix esdeveniment». 

Solar Orbiter a l‘Astrotech payload processing facility, Florida, USA, el 21 de gener 2020, l’últim dia abans del muntatge en la còfia del coet. Destaca la pantalla de protecció solar negra. ESA–S. Corvaja

El Sol és una estrella de massa mitjana en un estadi avançat i estable de la seua evolució. Tanmateix, experimenta erupcions periòdiques a curt termini i de difícil predicció conegudes com a activitat solar. El domini del Sol s’estén més enllà de l’atmosfera solar, mitjançant el vent solar, donant lloc a l’heliosfera, que inclou l’espai interplanetari i l’entorn planetari més enllà de Plutó. Així que comprendre l’acoblament del Sol i l’heliosfera és primordial per entendre el funcionament del nostre sistema solar. Les diferents condicions del vent solar i de l’activitat solar són els principals motors de la meteorologia espacial. La meteorologia espacial fa referència a la resposta de l’entorn espacial a les tempestes solars, que poden tenir un impacte significatiu en la societat actual. Per exemple, l’activitat solar, com ara erupcions solars i ejeccions de massa coronal, poden provocar ràfegues de partícules energètiques que causen danys en els satèl·lits, afecten els sistemes de navegació, o perjudiquen els astronautes en la futura exploració de la Lluna i Mart.

Aquests esdeveniments de partícules energètiques solars, principalment electrons, protons i ions més pesants fins a energies d’uns quants gigaelectronvolts, imposen restriccions a les activitats humanes a l’espai. Són difícils de predir pel coneixement incomplet dels processos físics bàsics implicats i la manca d’observacions a tota l’heliosfera.

Un dels propòsits de la missió de Solar Orbiter és explorar els fenòmens que passen en la zona dels pols solars. Com que la Terra i les sondes que s’hi llencen es troben en el pla de l’eclíptica, que correspon aproximadament a la zona equatorial solar, cal donar una empenta a la sonda per fer-la “pujar” l’òrbita. Això s’aconsegueix agafant energia dels planetes a través de les assistències gravitatòries. Així, Solar Orbiter farà una assistència gravitatòria al volant de la Terra i nombroses passos al voltant de Venus al llarg de la seua missió per ajustar la seua òrbita, apropant-la al Sol i per fer-la fora del pla de la eclíptica per observar el Sol des d’inclinacions cada vegada més altes. D’aquesta manera, la nau espacial podrà prendre les primeres imatges de les regions polars del Sol, unes dades mol importants per comprendre el funcionament del Sol.

Assistència gravitatòria de la Terra el 26 de novembre de 2021. ESA/ATG medialab

La combinació dels diferents instruments a bord de la nau espacial i la seua òrbita proporcionarà nova informació per comprendre les característiques solars i la seua connexió amb l’heliosfera i, al seu torn, ajudarà a comprendre la generació de tempestes solars.

Diverses assistències gravitatòries de l’òrbita de Solar Orbiter fins al 2030. ESA

Per als amants de les xarxes socials, s’ha creat l’usuari twitter @ESASolarOrbiter i l’etiqueta #WeAreAllSolarOrbiters per seguir al moment la missió.

Més informació sobre la missió al Solar Orbiter Publication Archive

També existeix un llibret Facing the Sun on s’explica la missió per a periodistes i public en general, en el idiomes de treball de la ESA. Ací està la versió en castellà.

Ací està també penjat aquest Mirando al Sol que explica la missió Solar Orbiter.

Publicat dins de El Sol i etiquetada amb , , , , | Deixa un comentari

Ens ha deixat Vicent Domingo, el gran senyor de la física solar

0

Vicent Domingo Codoñer, gran senyor de la física solar i de l’astrofísica valenciana i europea ens ha deixat per sempre. Actualment jubilat, era professor honorari al Departament d’Astronomia de la Universitat de València i membre del Grup d’Astronomia i Ciències de l’Espai, Laboratori de Processat d’Imatges (GACE/LPI).

Vicent es va formar en la Universitat de València i formava part de la primera generació de físics valencians que van eixir al món per aprendre primer i aportar molt de la seua experiència i saviesa. Vicent tenia una extensa experiència investigadora en l’àmbit de la física nuclear i de partícules, en física solar i en projectes espacials.

Va treballar en la primera part de la seua extensa carrera investigadora a l’Institut de Física CospuscularI/CSIC-Universitat de València, al Centre d’Études Nucléaires (França), al CERN (Suïssa), a la Universidad de La Paz (Bolivia), al MIT (EUA) i a la University of Colorado (EUA).

La segona part de la seua vida investigadora començà el 1970 quan entrà a formar part de la Agència Espacial Europea (ESA). Allí  va ser el científic responsable del projecte de la missió d’estudi del Sol SOHO, de l’Agència Espacial Europea, durant el desenvolupament fins al seu llançament l’any 1995. Una vegada a l’espai entre 1995 i 1998 va ser director del seu funcionament des del Goddard Space Flight Center de la NASA, a Maryland (EUA).  La missió  SOHO, amb una durada nominal de dos anys, assoleix quasi  25 anys de funcionament i és, actualment, el satèl·lit d’observació solar amb més edat deSOHO1 Foto ESA la història.

L’any 2000, ja jubilat de la ESA,  Vicente Domingo va tornar a la Universitat de València per a formar un grup de física solar i de desenvolupament d’instrumentació espacial per a missions solars, dins del Grup d’Astronomia i Ciències de l’Espai (GACE). Des de llavors i fins a la seua  mort ha participat en el desenvolupament de les mission estratosfèriques Sunrise i de l’instrument SO/PHI per la nova missió solar Solar Orbiter que serà llençada cap el Sol, si tot funciona correctament, la setmana que ve des de Cap Canaveral.

Gràcies Vicent pel que ens has donat, tant científicament com personalment.

Què n’esperem del 2020?

3
Publicat el 6 de gener de 2020

L’any 2020 ha començat i serà bo saber que podem esperar en el món de la ciència i tecnologia en els camps de l’astronomia, la física i la biologia. I com cada any la revista Nature ens ho explica. Tractaré de fer-ne un resum.

Astronomia i exploració espacial

Des del punt de vista de l’exploració espacial, Mart, la Lluna i el Sol seran els objectius principals de les agències espacials.

Mart rebrà enguany una veritable invasió terrestre.  La NASA llençarà el mes de juliol el nou explorador Mars 2020, que recol·lectarà mostres per ser recollides en futures missions. A destacar que per primera vegada es desplegarà un petit helicòpter per explorar més terreny al voltant del rover. Si tot funciona bé serà el seu quart rover marcià, després del Spirit, l’Opportunity i el Curiosity, que és l’únic que encara funciona. Tot un rècord. El nou explorador, de moment, no té nom popular assignat.

Rússia juntament amb l’Agència Espacial Europea llançarà també a l’estiu la missió ExoMars2020 i desplegarà una estació fixa, Kazachok, i un explorador mòbil en la superfície marciana. El rover, anomenat Rosalind Franklin en honor a la descobridora de l’estructura del ADN, buscarà proves de vida passada o present en Mart. L’anterior missió ExoMars2016 acabà de manera regular, ja que aconseguí posar el satèl·lit ExoMars Trace Gas Orbiter (TGO) en òrbita però estavellà el Mòdul de descens Schiaparelli. Ara esperem que aquesta vegada el rover europeu-rus arribe a la superfície sa i estalvi. De moment sembla que tenen problemes amb el paracaigudes.

L‘oposició de Mart del 2020 també serà aprofitada per Xina per envair-hi el seu primer mòdul de descens, Huoxing-1, que desplegarà un petit explorador. Vol aprofitar l’experiència dels seus rovers lunars.

I finalment, els Emirats Àrabs Units enviaran un orbitador, en la que serà la primera missió a Mart d’un país àrab.

La Lluna continuarà, com no podia ser d’una altra manera, sent un objecte d’interés per a les agències espacials. Xina continuarà amb el seu programa d’exploració amb la missió Chang’e-5 que retornarà  mostres de roques a la Terra. Mentrestant la missió Hayabusa2 del Japó arribarà a la Terra portant les preuades mostres de l’asteroide Ryugu. Per la seua part OSIRIS-REx arrencarà trossets de l’asteroide Bennu.

Solar Orbiter. ESA/ATG medialab

El Sol serà també protagonista enguany ja que a la sonda Parker que ja l’orbita, s’hi sumarà la gran nau europea Solar Orbiter, que amb 11 instruments científics, estudiarà de ben prop la corona i cromosfera solars.  A principis de febrer, un enorme coet Atlas V 411 el llençarà cap a la nostra estrella des de Cap Canaveral. Ja en parlarem.

Els científics de la col·laboració Event Horizon Telescope, que feren possible obtenir la primera imatge del forat negre de la galàxia M87 l’abril passat, tenen previst enguany donar-nos nous resultats espectaculars, aquesta vegada del forat negre supermassiu de la nostra galàxia, anomenat Sagitari A*.

Gaia, operada per l’Agència Espacial Europea (ESA), ha creat el mapa tridimensional més gran, precís, de la nostra Galàxia. Aquesta imatge mostra la visió de la Via Làctia basada en mesures de gairebé 1.700 milions d’estrelles.

A més a més, a final d’any es preveu publicar la nova actualització del mapa  3D de la Via Làctia, a partir de les dades de la missió Gaia. Les anteriors actualitzacions ens donaren molta informació relacionades amb l’estructura, el origen i l’evolució de la Via Làctia.

I els consorcis LIGO i Virgo continuaran descobrint ones gravitatòries causades per col·lisions de forats negres, estels de neutrons i, fins i tot forats negres i estels.

Física

Pròximament s´ha de debatre la proposta del Centre Europeu de Recerca Nuclear (CERN) de la futura construcció d’un nou col·lisionador sis vegades més potent que l’actual Gran Col·lisionador d’Hadrons LHC. Si s’aprova el projecte costaria uns 21.000 milions d’euros i caldria construir un nou anell de 100 km de circumferència sota la ciutat de Ginebra.

Des del descobriment del bosó de Higgs el 2012 no s’ha descobert cap nova partícula al CERN, per la qual cosa es pensa que cal construir màquines molt més potent per estudiar la matèria a més altes energies. Tanmateix, no tothom pensa que és bona idea fer unes despeses tan elevades per un retorn científic desconegut. La solució final la sabrem enguany.

I potser s’aconseguisca el somni de tot físic, aconseguir material sense resistència a temperatura ambient. De moment només s’ha pogut passar corrent sense pèrdues a molt baixes temperatures o a altes pressions. Però després de l’èxit dels compostos coneguts com a “superhidrurs de lantà”, que el 2018 van batre tots els rècords de temperatura per a la superconductivitat, els investigadors esperen sintetitzar superhidrurs d’itri que podrien ser superconductors a temperatures de fins a 53 ° C.

Finalment el sector energètic podria assolir una altra fita durant els Jocs Olímpics de Tòquio al juliol, quan es preveu que Toyota revele el primer prototip d’un cotxe alimentat per bateries d’ió de liti d’estat sòlid. Aquestes substitueixen el líquid que separa els elèctrodes de la bateria per un material sòlid, augmentant la quantitat d’energia que es pot emmagatzemar.

Moltes altres descobertes s’esperen en aquest 2020 en el camp de la biologia, com el del llevat sintètic, amb ADN creat en laboratori, les proves d’una vacuna contra la malària o el creixement d’òrgans humans en altres animals. Ho podeu llegir a l’article original de Nature.

Figures:
1- En una sala neta del Jet Propulsion Laboratory en Pasadena, California, els enginyers observen els primers moviments del Mars 2020 el 17 de desembre, 2019.

El misteri del metà a Mart

0
Publicat el 26 de juny de 2019

De vegades la ciència ens mostra moments d’intriga que semblen propis d’una novel·la de misteri. Això és el que està passant amb l’assumpte de la presència del gas metà a l’atmosfera de Mart. Un gas que podria estar associada a la possible existència de vida marciana o potser no. Tot no és tan fàcil com sembla.

Ja fa temps que la presència de metà al planeta roig ha estat confirmada. La nau europea Mars Express observà el 2003 i 2006 concentracions de metà en tres regions del planeta: Terra Sabae, Nili Fossae i Syrtis Major, indrets on l’aigua corria lliurement fa milers d’anys.

El gas metà (CH4) és una molècula que està relacionada amb la vida. A l’atmosfera terrestre aquest gas prové en un 95% d’organismes vius, per exemple de la descomposició de matèria orgànica per bacteris. Ara bé, la llum ultraviolada del Sol destrueix les molècules en uns 300-600 anys que manera que sense fonts que emeten contínuament gas metà ja faria molts mil·lennis que no s’hi detectaria a l’atmosfera terrestre.

Així doncs el metà marcià detectat no pot provindre d’antics reservoris de vida ja extinta sinó de vida bacteriana actual amagada sota la superfície i reposant de manera contínua el metà perdut. En això seria similar als bacteris terrestres descoberts a 2 o 3 quilòmetres sota la superfície en la conca Witwatersrand de Sud-àfrica. 

La nau russa-europea  Trace Gas Orbiter (TGO) arribà a Mart a final de 2016 amb la missió específica de descobrir les fonts d’aquest metà però de moment no ha tingut èxit després de tres anys d’exploració des de l’òrbita marciana. O no hi ha metà o està per sota del nivell de detecció dels instruments.

On s’ha tingut més èxit en la mesura de la presència del gas ha estat des de la superfície. El robot Curiosity de la NASA que es troba en el cràter Gale des del 2012 si que ha detectat metà i n’ha observat variacions al llarg de l’any marcià al ritme de les estacions. En hivern la concentració de gas baixa mentre en arribar la primavera torna a pujar amb un pic a finals de l’estiu.

Aquest oscil·lació estacional té valors ben baixos, de només de 0.6 parts per mil milions per volum (ppbv). Un valor que representa menys d’una molècula per cada mil milions de molècules atmosfèriques. Com a comparació, la concentració de metà a l’atmosfera de la Terra és de 1800 ppbv, és a dir per cada mil milions de molècules d’aire terrestre, 1800 són de metà.

Aquesta variació de la presència del gas és molt suggeridora de la presència de vida bacteriana, que estaria inactiva en hivern i reviscolaria en arribar la primavera.

La setmana passada, el rover Curiosity, amb l’ús de l’espectròmetre làser sintonitzable Sample Analysis at Mars (SAM) trobà un resultat sorprenent: la major quantitat de metà que mai s’ha mesurat durant la missió: unes 21 parts per mil milions de molècules per volum (21 ppbv). Els valors, però, es van reduir  dilluns d’aquesta setmana: els nivells de metà han disminuït bruscament, amb menys d’1 ppbv. Aquest és un valor proper als nivells de fons que Curiosity observa tot el temps.

La conclusió suggereix que la detecció de metà de la setmana passada, la major quantitat de gasos que s’ha trobat mai, va ser un dels plomalls transitori del metà que s’han observat en el passat des de l’espai. Mentre els científics han observat que els nivells de fons augmenten i disminueixen estacionalment, no han trobat cap patró en l’aparició d’aquests plomalls transitoris.

Tanmateix abans de llançar les campanes al vol cal explorar altres possibilitats per explicar la presència del gas a l’atmosfera marciana. Diversos processos geològics poden produir metà com ara l’oxidació del ferro, les molècules del qual poden quedar enganxades en estructures com els hidrats de gas que va soltant el gas a poc a poc. La serpentinització també pot produir un metà abiòtic. A la Terra això donaria compte del 5 al 10% del metà atmosfèric terrestre.

Seguirem aquest misteri apassionant. D’on prové el metà marcià? D’una vida encara no descoberta? De processos geològics? Continuarà…

 

Imatges: NASA/JPL-Caltech

Publicat dins de Sistema solar i etiquetada amb , , , , | Deixa un comentari