Hubble, 25 anys de descobriments

hubble

Avui, el telescopi espacial Hubble fa 25 anys a l’espai. L’instrument que ha canviat la nostra percepció de l’Univers es llançà a l’espai a bord del transbordador Discovery, en la missió STS-31, el 24 d’abril de 1990. El dia següent, el 25 d’abril, amb l’ajut del braç robòtic i d’algun passeig espacial, el Hubble va ser desplegat en la seua òrbita definitiva per la tripulació del transbordador.

El telescopi espacial Hubble és un telescopi robòtic amb un espill de 2,5 metres de diàmetre localitzat en les vores exteriors de l’atmosfera terrestre, en òrbita al voltant de la Terra a uns 500 quilòmetres d’alçada.  El seu període orbital es troba entre 96 i 97 minuts. Concebut des de finals dels anys 70, és un projecte conjunt de la NASA i de l’ESA, l’Agència Espacial Europea.

Des del moment que s’instal·là s’usa d’una forma diferent a la de tots els instruments llançats a l’espai fins aquell moment. Qualsevol investigador de qualsevol país el pot utilitzar de la mateixa manera que pot optar a qualsevol telescopi terrestre.telescope_essentials_data2_lg Només ha de fer una petició raonada i un informe tècnic que un comité científic valorarà. I n’hi ha tanta demanda que, actualment, es calcula que només una cinquena part de les peticions d’ús del Hubble són ateses. Això dóna a entendre el gran interés dels astrònoms per tindre accés a objectes celestes només assolibles amb aquest telescopi.

I fins a finals dels anys 90 el Hubble continuà sent innovador i inclús  hi havia un programa de petició de temps per a astrònoms aficionats, però les restriccions de pressupostos i de personal no van permetre la seua continuïtat.

Hermann Oberth, el pare de l’astronàutica alemanya, va veure la necessitat de disposar d’un gran telescopi a l’espai ja l’any 1923. L’astrònom nord-americà Lyman Spitzer va escriure un famós informe l’any 1946 en què discuteix sobre els avantatges de tindre un observatori astronòmic extraterrestre.

L’avantatge de disposar d’un telescopi més enllà de l’atmosfera radica principalment en què, d’aquesta manera, es poden eliminar els efectes de la turbulència atmosfèrica (un malson per als astrònoms), cosa que permet aconseguir la màxima resolució òptica de l’instrument. A més l’atmosfera terrestre absorbeix fortament la radiació electromagnètica en certes longituds d’ona. Especialment en l’infraroig no es pot observar des de terra, ni en la zona de l’ultraviolat. A més a més és impossible fer espectroscòpia en certes bandes a causa de l’absorció de l’atmosfera terrestre.

També cal afegir que els telescopis terrestres es veuen afectats per factors meteorològics, com ara la presència de núvols, o per pols o turbulències i, d’altra banda, la contaminació lumínica ocasionada pels grans assentaments urbans fa que només es puguen situar els grans telescopis en zones molt allunyades. Un observatori com el Hubble que evite tots aquests problemes inherents a l’observació des de terra, ha de ser, per tant, molt preuat.

Problemes inicials

L’any 1990, una vegada va estar el Hubble en òrbita, tot el món esperava les primeres imatges espectaculars dels planetes, de les nebuloses, de les galàxies però aviat s’adonaren que les imatges estaven totes borroses! Que havia passat? 1600 milions de dòlars llençats al fem per a un telescopi miop? Els enginyers de la NASA anaven de bòlit tractant d’esbrinar què havia passat. Finalment s’adonaren que l’espill del telescopi no enfocava bé els objectes i produïa una imatge amb aberració esfèrica. La culpable, l’empresa constructora de l’òptica.

El telescopi espacial havia estat llançat a l’espai amb el seu espill principal tallat perfectament… però amb la forma equivocada. No era un error molt gran, tan sols d’una vint-i-cinquena part del grossor d’un cabell humà. El microdefecte va ser suficient per a fer que el telescopi d’1600 milions de dòlars, fóra miop i ens regalara unes imatges mai no vistes d’un extraordinari univers…….borrós.

800px-Improvement_in_Hubble_images_after_SMM1Va caldre enviar la primera missió de manteniment del Hubble l’any 1993, per canviar la càmera Wide Field Planetary Camera 1, per la nova Wide Field Planetary  Camera 2 que portava una òptica incorporada per focalitzar bé, una mena d’ulleres. Mireu, abans i després. Amb aquesta càmera es va obtenir, per exemple, la imatge més profunda, la d’objectes més llunyans i més antics (que ve a ser el mateix), el Camp Profund del Hubble.

Tot ha anat bé des d’aleshores. I d’altres missions del transbordador han anat canviant equips obsolets o espatllats.

Ghostscript 24 bit color image dumpGhostscript 24 bit color image dump

Però tots aquests problemes inicials ja s’han resolt afortunadament. Avui toca celebrar els 25 anys exitosos a l’espai i parlar de la revolució dels coneixements de l’univers que ens ha regalat el telescopi Hubble. I és que el Telescopi Espacial Hubble ha canviat significativament la nostra visió de l’Univers. Alguns dels descobriments més innovadors realitzats en el camp de l’astronomia del segle XX han estat realitzats pel Hubble, la qual cosa ha permès als astrònoms comprendre millor el món en què vivim i investigar encara més al voltant dels seus misteris.

Fem un ràpid repàs dels descobriments més importants.

Camps profunds

Una de les raons principals per la qual va ser construït el telescopi espacial Hubble fou per a mesurar la grandària i l’edat de l’univers i provar les últimes teories sobre el seu origen.

Hubble_ultra_deep_fieldsUn gran resultat relacionat amb aquest objectiu va ser aconseguir les Deep Fields (Camp Profund, Camp ultra profund). Són observacions que Hubble ha anat fent en zones molt petites del cel, on aparentment no hi havia res per observar i que, després de mirar durant molt de temps (dies, fins i tot), han anant apareixent milers de galàxies dèbils que no es coneixien. Això ha estat un resultat sorprenent que ningú no s’esperava. I en alguns d’aquests Camps Profunds s’ha aconseguit veure galàxies que daten de només 500 milions d’anys després del Big Bang. El que ens ensenya aquest descobriment és que si mirem molt de temps amb un telescopi a qualsevol direcció de l’univers trobarem milers i milers de galàxies. Un resultat impressionant.

Amb els Camps Profunds els astrònoms van poder veure amb claredat, per primera vegada, el moment en què les galàxies s’estaven formant. Les imatges d’aquestes galàxies febles donen pistes “fòssils” sobre la forma que va tindre l’univers en un passat molt remot i com va poder haver evolucionat amb el temps.

Expansió accelerada

Amb el Hubble també s’ha aconseguit esbrinar el ritme i la forma en què l’Univers s’expandeix. I resulta que no només s’expandeix, sinó que ho fa de manera accelerada. Durant molts anys els cosmòlegs han estat discutint sobre si l’expansió de l’Univers s’aturaria en algun futur distant o si continuaria eixamplant-se  per sempre. I això depenia de la quantitat de massa que té l’Univers en conjunt i, en conseqüència, de quina és la densitat de l’Univers.

Doncs ara sabem que, per les observacions de supernoves llunyanes dutes a terme amb el Hubble, l’expansió no està disminuint en absolut, sinó que, a causa d’alguna propietat misteriosa de l’espai, denominada energia fosca, l’expansió s’està accelerant. Aquesta conclusió sorprenent és el resultat dels mesuraments combinats en observar supernoves llunyanes amb els millors telescopis del món, inclòs el Hubble.

El descobriment de l’expansió accelerada de l’Univers va permetre que l’any 2011 tres astrònoms, Saul Perlmutter, Adam Riess i Brian Schmidt, obtingueren el Premi Nobel de Física.

Esclats de raigs gamma

Les observacions realitzades amb el telescopi espacial Hubble han aconseguit posar llum a un misteri: els esclats de Raigs Gamma (GRB, en anglés). Són emissions molts curtes d’aquesta radiació tan energètica, només observables des de telescopis amb detectors d’alta energia en òrbita. Són tan curtes que de vegades no s’aconseguia distingir la seua petjada visible des de terra. En ser tan energètics semblava que no estarien associats a estrelles. Avui, en part a causa del Hubble, sabem que aquestes explosions s’originen en altres galàxies, sovint a molt grans distàncies.

Després de les observacions del Hubble de l’atípica supernova SN1998bw i de l’esclat de raigs gamma GRB 980425, semblà plausible una connexió física d’aquests dos esdeveniments. Però altres treballs associen els esclats al xoc i col·lapse d’un sistema binari d’estrelles de neutrons.

hs-2005-37-a-large_web

Mirant els planetes

El telescopi espacial Hubble ha dedicat també part del seu temps d’observació a investigar els objectes més pròxims com els cossos del Sistema Solar.

Les imatges del Hubble d’alta resolució dels planetes i llunes del nostre Sistema Solar només poden ser superades per les fotos preses per naus espacials que hi han anat, al seu costat. Hubble, fins i tot, té un avantatge sobre aquestes sondes: pot veure aquests objectes de manera regular, per la qual cosa pot observar-los durant períodes molt més llargs que qualsevol sonda que haja passat a prop. El control regular de les superfícies planetàries és vital en l’estudi d’atmosferes i geologia planetàries.

Ghostscript 24 bit color image dumpA més Hubble és més versàtil per a l’observació planetària. Pot reaccionar ràpidament a successos inesperats que ocorren en el Sistema Solar. Per exemple, açò ens va permetre veure l’impressionant xoc dels trossos del cometa Shoemaker-Levy 9 en l’atmosfera de Júpiter durant uns quants dies del mes de juliol de 1994. Hubble va seguir els fragments del cometa en el seu últim viatge i va enviar increïbles imatges en alta resolució de les cica0124atrius de l’impacte.

Hubble també ha observat el planeta Mart, sobretot en les oposicions, Saturn i les seues llunes i, per suposat Plutó i les llunes que l’envolten. I fins i tot ha descobert noves llunes, així com un planeta nan més enllà de Plutó, la qual cosa va conduir a discutir si Plutó és un planeta. I això comportà la rebaixa final de categoria espacial del  cos celeste.

hs-2009-12-a-full-jpg

 

 

 

Formació planetària

Han estat molt importants les observacions de Hubble que han servit per confirmar les teories de la formació dels planetes. Abans del llançament del telescopi, s’estava segur que el Sol s’havia format a partir d’una nebulosa de gas i pols, que es comprimí deixant al seu voltant un disc de residus del qual, per acreció, s’anaren formant els planetes. Tot molt bonic, però no es tenien altres exemples. Com saber si la teoria era correcta?

L’alta resolució de la càmera del Hubble va permetre, per primera vegada, observar aquests discos de gas i pols, (en anglés “proplyds” de protoplanetary disks), al voltant d’estrelles acabades de nàixer en la nebulosa d’Orió. Recorde perfectament les imatges dels discos menuts amb un punt roig al centre en una imatge del Hubble de l’any 1995. El descobriment va causar impacte. A partir d’aquell moment es va tindre la certesa que existien segurament altres planetes fora del sistema solar i que es formaven com ho va fer el nostre.

Orion Nebula proplyd atlas

Però Hubble també ha tractat d’observar planetes ja formats fora del Sistema Solar. Així és com l’any 2008, va aconseguir fotografiar per primera vegada un planeta extrasolar en llum visible. I així va ser com vam poder veure el planeta Fomalhaut b, un planeta gegant gasós d’aproximadament tres vegades la massa de Júpiter en òrbita de l’estrella Fomalhaut. Dins del disc de residus que l’envolta, un petit punt brillant va canviant de posició d’any en any.

Però fins i tot, fa ben poc, l’any 2012 Hubble descobrí un nou tipus de planeta extrasolar: un món aquàtic, una espècie de Waterworld extraterrestre, envoltat per una atmosfera densa i humida.

hs-2008-39-a-web_print

Forats negres supermassius galàctics

Les altes prestacions del telescopi Hubble no només han confirmat l’existència dels forats negres, sinó que amb l’alta resolució de les càmeres de Hubble s’ha demostrat que efectivament els forats negres existeixen i que, a més a més, el centre de totes les galàxies espirals tenen un forat negre supermassiu, un monstre d’uns quants milions de masses solars. De fet, Gargantua, el forat negre de la pel·lícula Interstellar, és un forat negre d’aquest tipus. No s’han inventat res. I això ho sabem ara gràcies a les observacions fetes amb el Hubble.

Però no ho saben tot encara, per sort. El perquè d’aquesta associació, forat negre – galàxia és encara un misteri que caldrà esbrinar. Això té moltes implicacions per a la teoria de formació i evolució de les galàxies.

hs-1998-22-a-web_print

Lents gravitatòries com a telescopis còsmics

Tothom té assumit en el nostre subconscient que la llum viatja en línia recta. Ho veiem cada dia. Però realment això no és així. Einstein ja va demostrar el 1915, fa 100 anys!, que els objectes massius deformen el teixit de l’espai-temps. Així que quan la llum d’un objecte llunyà passa prop d’una galàxia o d’una estrella, la seua trajectòria es corba cap a ells. Aquest efecte s’anomena lent gravitatòria i s’observa en ben poques ocasions. S’ha de tindre la sort de tindre alineats un objecte llunyà amb una galàxia relativament pròxima. I només la sensibilitat de telescopis com el Hubble les pot estudiar detalladament. De vegades els rajos que vénen en diferents direccions de l’objecte llunyà es dobleguen formant múltiples imatges de la galàxia original. Un exemple recent ha estat veure com una supernova d’una galàxia distant mostrava quatre imatges a causa de la distorsió d’un cúmul de galàxies pròximes.

hs-2015-08-a-web_prints

Matèria fosca

Les observacions amb el Hubble han permés també estudiar la misteriosa matèria fosca. Actualment es creu que unes 3/4 parts de la massa de l’Univers està formada per una matèria que no emet llum, una substància molt diferent de la que composa el món que ens envolta.

La matèria fosca interactua només amb la gravetat, la qual cosa significa que no reflecteix, ni emet, ni tapa la llum de les estrelles. Per això, no es pot observar directament. Ara bé els estudis fets amb el Hubble de com els cúmuls de galàxies dobleguen la llum que passa per ells (les lents gravitatòries de les quals hem parlat abans) permeten deduir on es troba la massa oculta. A partir de les observacions ja s’han fet mapes indicant on està aquesta massa fugissera.

L’enigma de la naturalesa d’aquesta fantasmal matèria encara estem lluny de resoldre’l. Ho comprendrem algun dia? Segur.

Nova visió de l’Univers

Hubble ens ha canviat la nostra visió de l’Univers. Abans de Hubble era com si miràrem el cel amb ulleres brutes. Amb Hubble hem vist el cel directament sense les ulleres, molt més clar i sense impediments. El telescopi espacial és una de les missions científiques més reeixides i duradores de la NASA i de l’ESA. Ha retornat a la Terra centenars de milers d’imatges, llançant llum sobre molts dels grans misteris de l’astronomia. La seua mirada ens ha ajudat a determinar l’edat de l’univers, la identitat dels quàsars i l’existència de l’energia fosca.

I què li passarà finalment a Hubble? Segons el que li queda de combustible sembla que podrà durar fins el 2020 o 2030. Ja s’està preparant un substitut, el telescopi James Webb, amb un nou disseny… però d’això ja en parlarem un altre dia.

Més informació:

La web creada per a l’aniversari: Hubble 25 Anniversary.

El lloc web on trobar les seues imatges: Hubble site.

El Hubble Heritage Project website. On s’han triat les millors imatges del telescopi Hubble, s’han millorat i s’han explicat per experts amb la finalitat d’educar i inspirar.

Imatges:
Foto 1. Hubble observat des d’un transbordador.
Foto 2. Transferència de dades des del Hubble.
Fotos 3. Imatge abans i després de la reparació, 1993
Foto 4. Columnes de gas en la Nebulosa de l’Àguila(M16): Pilars de la Creació. Zona de formació estel·lar. NASA, ESA, STScI, J. Hester and P. Scowen (Arizona State University).
Foto 5. Aquesta imatge d’alta resolució del camp ultra profund del Hubble HUDF inclou galàxies de diferents edats, mides, formes i colors. Les més petites i vermelles, unes 100, són de les més distants i ja existien quan l’univers tenia tot just 800 milions d’anys. NASA/ESA.
Foto 6. Nebulosa del Cranc (M1). Gas en expansió de la supernova 1054.NASA, ESA, J. Hester and A. Loll (Arizona State University).
Foto 7. Imatge en color dels impactes múltiples del cometa P/Shoemaker-Levy 9 en Júpiter. NASA/ESA
Foto 8. Imatge de Mart durant l’oposició del 2001. NASA/ESA
Foto 9. Quatre llunes al voltant de Saturn. NASA, ESA, and the Hubble Heritage Team (STScI/AURA)
Foto 10. Sistemes protoplanetaris en Orió. NASA, ESA and L. Ricci (ESO)
Foto 11. Imatge de Fomalhaut i Fomalhaut b Credit: NASA, ESA, P. Kalas, J. Graham, E. Chiang, E. Kite (University of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center), M. Fitzgerald (Lawrence Livermore National Laboratory), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory)
Foto 12. Un disc de pols envolta un fotat negre supermassiu en la galàxia espiral NGC 7052. Roeland P. van der Marel (STScI), Frank C. van den Bosch (Univ. of Washington), and NASA.
Foto 13. Hubble veu com una supernova es separada en quatre imatges per una lent còsmica. NASA, ESA, and S. Rodney (JHU) and the FrontierSN team; T. Treu (UCLA), P. Kelly (UC Berkeley), and the GLASS team; J. Lotz (STScI) and the Frontier Fields team; M. Postman (STScI) and the CLASH team; and Z. Levay (STScI)

Deixa un comentari

L'adreça electrònica no es publicarà. Els camps necessaris estan marcats amb *