Fernando Ballesteros, Cap d’Instrumentació de l’Observatori Astronòmic de la Universitat de València, ha estat el quart conferenciant de la Setmana de la Ciència de Gandia 2020, organitzada per CEIC Alfons el Vell, la Universitat de València i la Universitat Politècnica de València, Campus de Gandia.
Ha treballat en el disseny i desenvolupament del telescopi espacial de rajos gamma INTEGRAL, de l’Agència Espacial Europea, actualment en òrbita al voltant de la Terra, així com del telescopi espacial LEGRI a bord de Minisat01 (INTA). Posteriorment els seus interessos van evolucionar cap a l’astrobiologia, i treballà en temes d’emergència de la complexitat i la vida en l’univers. En l’actualitat està involucrat a més en el projecte JPAS, un cartografiat del cel que s’està preparant al nou Centre Astrofísic de Javalambre, Gudar-Javalambre (Aragó), en el que treballa en el disseny de les àrees a cartografiar.
Amb una àmplia experiència en el camp de la divulgació, és Premi PRISMA 2016 pel seu llibre “Fractales y Caos, la aventura de la complejidad” i Premi Europeu de Divulgació Científica Estudi General de 2006 pel seu llibre “Gramàtiques Extraterrestres” i autor o coautor d’una multituds de llibres més. Actualment el seu llibre més llegit i conegut és “Las mujeres de la Luna” escrit amb Daniel R. Altschuler, que ja ha fet diverses edicions i enguany s’acaba de publicar en anglés.
La seua xarrada “Habitabilitat de l’univers” gira al voltant de l’apassionant tema de la cerca de la vida o la possibilitat de l’existència d’aquesta en diversos llocs del nostre entorn còsmic. Alguns planetes i llunes del nostre sistema solar semblen tindre possibilitat d’albergar algun tipus de vida actual o passada com ara Mart, Europa, una lluna de Júpiter o la lluna Encèlad, lluna de Saturn. Per això s’han enviat o s’enviaran en els pròxims anys sondes per esbrinar-ne la possibilitat.
Tanmateix la descoberta de milers de planetes al voltant de moltes estrelles ha obert un camp nou com és la cerca de biomarcadors adequats, senyals en els espectres de la llum reflectida pels planetes que ens indiquen la presència de molècules relacionades amb la vida.
Algunes desenes d’aquests planetes es troben en la zona d’habitabilitat de la seua estrella, una regió al seu voltant on l’aigua podria mantindre’s líquida. Aquests planetes són els mes afavorits per albergar algun tipus de vida, almenys tal com la coneixem.
El futur d’aquesta branca de l’astronomia, i que va de la mà de la biologia, es presenta apassionant. Quan descobrirem un altre planeta viu? Qui hi haja vida intel·ligent ja és una altra història.
La xarrada de Fernando Ballesteros es pot veure al canal de YouTube del CEIC Alfons el Vell.
De dilluns 16 a divendres 20 de novembre celebrem la IV Setmana de la Ciència de Gandia organitzada pel CEIC Alfons el Vell, la Universitat de València i la Universitat Politècnica de València.
Enguany és un any difícil per a tots però hem volgut continuar el nostre compromís amb la ciència.
Les conferències seran retransmeses a través del Canal de Youtube del CEIC: SETMANA DE LA CIÈNCIA 2020 , tot i que hi haurà la possibilitat d’accedir a la Casa de la Marquesa amb reserva prèvia i amb un aforament molt limitat. Els interessats, podran reservar a través del correu del CEIC Alfons el Vell:
La setmana pròxima, de dilluns 16 a divendres 20, celebrarem la IV Setmana de la Ciència de Gandia organitzada pel CEIC Alfons el Vell, la Universitat de València i la Universitat Politècnica de València.
Enguany és un any difícil per a tots però hem volgut continuar el nostre compromís amb la ciència.
Les conferències seran retransmeses a través del Canal de Youtube del CEIC: SETMANA DE LA CIÈNCIA2020 , tot i que hi haurà la possibilitat d’accedir a la Casa de la Marquesa amb reserva prèvia i amb un aforament molt limitat. Els interessats, podran reservar a través del correu del CEIC Alfons el Vell:
El planeta Mart s’encamina cap a l’oposició al Sol, el punt de màxima aproximació a la Terra, que ocorre cada 26 mesos. I, com passa des dels inicis de l’exploració planetària, les agències espacials aprofiten aquesta oportunitat per llançar les seues missions d’exploració al planeta roig. Enguany tres estats hi envien coets: els Estats Units, la Xina i, sorpresa, els Emirats Àrabs Units.
Els Estats Units continuen amb el seu extens programa robòtic d’exploració de la superfície, amb l’enviament del 5è robot, Perseverance, que aterrarà al cràter Jerezo en febrer de l’any que ve. La Xina, com a continuació del seu agressiu programa espacial, ha aprofitat tot el que ha aprés dels seus robots lunars i s’atrevirà a enviar la missió Tianwen-1 que consta d’un orbitador i d’un ròver d’exploració. Però si l’aposta de la Xina ja és arriscada, pel que contaré més avant, l’aparició en escena d’un nou agent espacial, els Emirats Àrabs Units, va sorprendre tothom quan anuncià que també volia participar en la cursa cap a Mart el 2020 amb la missió Hope. La forta participació nord-americana, en coneixement i instruments, hi ha ajudat una mica.
I que se n’ha fet dels europeus? L’Agència Espacial Europea (ESA), en col·laboració amb Roskosmos, l’agència russa, ja tenien preparada la missió ExoMars2020 que desplegaria una estació fixa, Kazachok, i un explorador mòbil en la superfície marciana. El robot explorador, anomenat Rosalind Franklin, en honor a la científica que obtingué la primera imatge de l’estructura del DNA, buscaria proves de vida passada o present en Mart. Tanmateix diversos problemes tècnics amb els paracaigudes que havien de dipositar suaument Rosalind en terra marciana, han aconsellat deixar passar aquesta finestra de llançament i tornar a intentar-ho el 2022.
Però, per què el viatge a Mart és d’atrevits? Les estadístiques ens diuen que un 50% de les missions al planeta fracassen. O s’estavellen o no s’insereixen en òrbita marciana. La minsa atmosfera de Mart, amb només una centèsima part de la densitat de l’atmosfera terrestre, en té part de culpa. Aterrar-hi suaument és una empresa summament arriscada. Són necessaris mètodes ben imaginatius per fer arribar un aparell sa i estalvi a la superfície.
Hope i Tianwen-1 ja han aprofitat la finestra de llançament actual i ja van partir fa uns dies cap al planeta roig. La missió Mars2020, que du el robot Perseverance, serà llançat a l’espai segurament el pròxim dijous 30 de juliol des de Cap Canaveral a Florida.
Passem a detallar una mica les característiques de cada missió:
Hope (Esperança) serà la primera missió espacial planetària d’un estat àrab. Però, a més a més, des del punt de vista científic, el seu orbitador farà el primer mapa meteorològic diürn i nocturn del planeta Mart. Amb la seua òrbita el·líptica de 55 dies monitoritzarà tot l’oratge almenys durant tot un any marcià (uns 2 anys terrestres), La sonda disposa d’una càmera d’alta resolució per observar en el rang visible i un espectròmetre infraroig per estudiar els núvols i les espectaculars tempestes de pols en la baixa atmosfera. L’alta atmosfera serà controlada per un altre espectròmetre ultravioleta. Cal destacar que lidera el projecte la científica de 31 anys Sarah Amiri, que és també ministra d’estat de Ciències Avançades dels Emirats.
Hope ens donarà informació de com l’atmosfera marciana perd oxigen i hidrogen a l’espai i com es transformà l’atmosfera densa que tenia en el passat, amb altes concentracions de vapor d’aigua, en l’atmosfera esquifida que té ara. Aquesta primera missió planetària ha estat duta a terme per un equip d’enginyers dels Emirats amb la col·laboració de diverses institucions, com la University of Colorado Boulder, la University of California, Berkeley i la Arizona State University.
Aquesta aposta del govern dels Emirats, a banda del seu interès científic i tecnològic, ha servit per entusiasmar la gent més jove i atraure-la cap a les ciències. També ha estat un dels grans esdeveniments de la celebració dels 50 anys de la independència de la Gran Bretanya.
La missió xinesa a Mart, anomenada Tianwen-1(qüestions celestials), és la culminació de l’ambiciós programa espacial xinés. Cal recordar que actualment la Xina té dos robots actius a la superfície lunar, un d’ells a la cara oculta, un indret on cap agència havia aconseguit situar-s’hi fins ara.
Fruit d’aquesta experiència lunar, la Xina ha tirat la casa per la finestra i s’ha atrevit a enviar un pack complet: orbitador, aterrador i robot explorador marcià. L’any 2011 la missió conjunta russo-xinesa Phobos-Grunt fallà quan els coets propulsors la deixaren en una òrbita baixa terrestre sense possibilitat de recuperar-se. Ara, sola però més forta tecnològicament, envia una atrevida missió al planeta roig.
A mitjan del pròxim mes de febrer la missió marciana arribarà al planeta Mart i es posarà en òrbita. Cap al 23 d’abril de 2021 és prevista la part més delicada de l’aventura xinesa, quan l’aterrador amb el robot a bord se separe per tractar d’arribar a Utopia Planitia, una gran plana, antic cràter d’impacte, lloc on aterraren, ja fa 37 anys, les mítiques sondes Viking de la NASA.
L’orbitador disposa de set instruments científics, mentre que l’explorador robòtic en té sis. A banda d’estudiar les característiques de l’atmosfera marciana, l’orbitador xinés estudiarà el subsòl de Mart fins a 100 metres amb un radar per buscar dipòsits d’aigua i gel i amb les càmeres d’alta resolució escodrinyarà les muntanyes, volcans, etc… A més a més, tant l’orbitador com el ròver disposen d’espectròmetres per determinar la composició de les roques i pols que siguen d’interès.
La part més delicada de la missió és la maniobra per depositar el robot explorador en la superfície. Els anomenats 7 minuts de terror, el temps necessari per passar de la comoditat orbital a la seguretat en la superfície, produiran calfreds als científics xinesos. Per aterrar s’ha optat per un sistema combinat d’un únic paracaigudes i retrocoets hipergòlics. Esperem que tinguen sort on molts han fracassat.
La missió més ambiciosa i cara és la Mars2020 que du a bord el 5è robot explorador marcià de la NASA. Aquest ròver, de nom Perseverance, és una evolució tecnològica de l’actual robot marcià Curiosity localitzat al cràter Gale i que hi arribà el 2012. La gran versatilitat, potència i duració d’aquest robot va convèncer la NASA del fet que el disseny tecnològic de Curiosity era el correcte. Només calia fer algunes millores, com ara el canvi de les rodes que, en el cas del robot antic estan actualment fetes malbé després de 8 anys corrent per la superfície marciana; la instal·lació de més i millors càmeres, un làser perforador millorat i alguns altres detectors de gasos.
Perseverence arribarà a Mart cap al 18 de febrer de l’any que ve. Esperem que els 7 minuts de terror puguen acabar feliçment en dipositar-se el ròver suaument en la zona triada del cràter Jerezo, amb el mecanisme de la grua que tan bé funcionà amb Curiosity.
El que fa realment especial Perseverance són tres experiments ben nous: l’intent de fabricació d’oxigen a partit del diòxid de carboni (com a prova que els futurs astronautes podran fabricar el seu propi oxigen en l’exploració marciana), l’enlairament d’un petit helicòpter que permetrà estudiar zones inaccessibles per al robot i la recollida de mostres de roques i pols que, una vegada encapsulades i segellades, seran abandonades en algun indret marcià per ser recollides per la futura missió Mars Sample Return en col·laboració amb l’Agència Espacial Europea, que les enviarà a la Terra abans del 2030. Es pretén tindre mostres marcianes en els nostres més sofisticats laboratoris terrestres per buscar-hi rastres de vida passada o actual.
De fet, la Xina no vol estar fora d’aquesta altra cursa per a l’anàlisi de material marcià i per això ja prepara una missió per emular Mars Sample Return, també cap al 2030.
Assistim expectants a una cursa espacial i tecnològica cap a Mart, en la qual els europeus no hem arribat ni a classificar-nos. Esperem que totes les missions tinguen èxit. En continuarem parlant.
1,. El planeta Mars en l’oposició de 2014. Ximo Camarena, Agrupació Astronòmica de la Safor. 17 abril 2014.
2.- Llocs d’aterratge passats i futurs a Mart. Planetary Society.
3.- Hope, dibuix artístic de la nau Hope. Wikipedia Commons.
4.- Sarah Amiri, que és també ministra d’estat de Ciències Avançades dels Emirats.
5.- Orbita de Hope. UAE Space Agency.
6.- Enlairament de la missió Tianwen-1. Wikipedia Commons.
7.- Model 1: 3 del xinès Mars Rover que es mostrà a la Plataforma de cooperació marítima d’Àsia Oriental 2018 de Fòrum de Qingdao. Wikipedia Commons.
8.-10- Perseverance. NASA/JPL.
L’expectació era gran aquest vespre per l’anunciada conferència de premsa de la NASA. Ja sabíem que l’anunci estaria relacionat amb els exoplanetes, planetes situats més enllà del sistema solar. De fet, un dels objectius de l’astronomia del segle XXI és la detecció de planetes tipus Terra. I amb puntualitat, a les 19 h. s’ha donat la gran notícia: el descobriment de set planetes d’una grandària similar al nostre i que giren al voltant de l’estel TRAPPIST-1. La troballa d’aquest sistema de set mons rocosos, tots ells amb possibilitats d’aigua en la superfície, és un pas endavant molt important per la recerca de vida fora de la Terra. El descobriment s’ha publicat en la revista Nature (ací resum).
L’estel TRAPPIST-1 es troba a uns 39 anys llum de distància i la podem trobar a la constel·lació d’Aquarius. És un nan roig, estel que es caracteritza per tindre molt poca massa. Com a conseqüència d’això, en aquests tipus d’estels el ritme de crema de l’hidrogen en el nucli estel·lar és tan lent que s’estima que poden durar més que tota la història de l’univers. Són bastant fredes ja que la temperatura superficial no arriba als 4000 K.
Com ja vaig contar en el cas de Proxima Centauri, també nan roig, i el planeta descobert al seu voltant, un estel tan dèbil i fred presenta molt prop seu la zona d’habitabilitat, regió al voltant de l’estel on l’aigua es pot mantindre líquida. I, de fet, tres dels planetes descoberts cauen dintre d’aquesta zona privilegiada. La vida, tal com la coneixem, necessita aigua líquida per mantenir-se i, aquesta zona és un bon lloc on començar a buscar vida fora de la Terra.
L’equip internacional que ha descobert el nou sistema planetari està liderat per l’astrònom de la Universitat de Lieja (Bèlgica), Michaël Gillon. Des de fa uns anys el seu grup s’ha dedicat a buscar planetes al voltant d’estel nans roigs de poca massa. De fet, aquests estels han estat sistemàticament ignorats ja que la missió Kepler de la NASA, dedicada a buscar exoplanetes, només apunta a estels semblants al Sol, molt més calents.
Aquest astrònom porta endavant la col·laboració TRAPPIST (The Transiting Planets and Planetesimals Small Telescope) que tracta de “caçar” planetes amb un parell de telescopis de 60 cm: un en Marroc, per a l’estudi del cel de l’hemisferi nord i altre en Xile, per al cel de l’hemisferi sud. Per trobar els possibles planetes al voltant d’un estel s’usa el mètode dels trànsits: observar la lleu baixada de lluminositat (menor d’1%) que produeix el pas d’un planeta per davant del seu estel.
El mes de maig passat l’equip publicà els resultats d’una campanya d’observació sobre l’estel anomenada TRAPPIST-1. S’havien descobert tres planetes al voltant de l’estel. Dos dels planetes, TRAPPIST-1b i TRAPPIST-1c, eren segurs. Tanmateix, respecte al tercer planeta, TRAPPIST-1c, hi havia dubtes, ja que només van poder veure dos senyals del suposat objecte.
Així que, per assegurar-se, van demanar poder utilitzar el Spitzer Space Telescope, un telescopi espacial especialitzat en observar en la banda de l’infraroig. Cal recordar que la dèbil estrella brilla més en aquestes longituds d’ona. Durant 20 dies consecutius varen poder observar el sistema TRAPPIST-1 per caracteritzar finalment el fugitiu planeta. El resultat, però, no va ser el que s’esperava. Realment, sota l’aparença d’un únic planeta se n’amagaven quatre, amb períodes orbitals d’uns 4, 6, 9 i 12 dies. A més, Spitzer va revelar el senyal dèbil d’un altre planeta addicional TRAPPIST-1h. Hi havia, per tant, almenys set planetes al voltant de l’estel.
La proximitat dels valors dels períodes orbitals dels sis primers planetes a divisions de nombres enters petits (8/5, 5/3, 3/2, 3/2 i 4/3, respectivament) ens indica que les òrbites dels planetes són ressonants i que, segurament, els planetes es formaren més lluny del seu estel del que estan ara i que posteriorment migraren a les posicions actuals. A més a més, les mesures precises de Spitzer demostren que els planetes interactuen entre ells, i, a més, en estar tan prop de l’estel, hi poden estar lligats per efectes de marea, mostrant-li sempre la mateixa cara, tal com passa amb la Lluna respecte de la Terra. Tindrien d’aquesta manera una rotació síncrona: el període de rotació i de translació de cada planeta serien iguals. Per tant cada cara dels planetes té dia/nit perpetua. Això determinarà el clima d’aquests cossos ja que presentaran vents intensos que bufen de l’hemisferi diürn al nocturn.
En principi la presència d’aigua líquida en el sistema planetari seria possible només per als planetes e, f, g que es troben ben endins de la zona habitable del sistema. Tanmateix els autors de l’article afirmen que la rotació síncrona de tots els planetes seria la causa d’altres configuracions no previstes, com ara l’existència de planetes amb superfícies totalment congelades, amb oceans interiors en la part nocturna, mentre la part diürna, més càlida, tindria una superfície lliure de gels. La possibilitat de vida en aquest tipus de planetes ha estat estudiada. El vídeo mostra una visió artística del possible aspecte d’aquests planetes.
La troballa és realment extraordinària. L’astrofísica Elisa Quintana, del Goddard Space Flight Center de la NASA i membre de l’equip TRAPPIST comenta: “Tindre aquest sistema de set planetes és realment increïble. Us podeu imaginar la quantitat d’estrelles properes que podrien albergar munts i munts de planetes”
Aquest sistema és un laboratori excel·lent per estudiar l’evolució dels petits planetes com el nostre. A més a més, les seues atmosferes podran ser analitzades fàcilment pels futurs grans telescopis en construcció com l’E-ELT o pel James Webb Space Telescope. Buscar, i potser trobar, traces de vida a través de gasos bio-marcadors com el metà, l’ozó o d’altres serà un repte per a la pròxima dècada.
“De tots els mons que hem vist en la ciència ficció, aquests són encara més extraordinaris“, diu Hannah Wakeford, un científic que treballa en exoplanetes a Goddard.
Imatges:
1.- Representació artística dels set planetes descoberts. NASA/JPL-Caltech/R. Hurt, T. Pyle (IPAC).
2.- Els set planetes al voltant de TRAPPIST-1 tal com es veurien des de la Terra amb un telescopi hipotètic de gran potència. NASA/JPL-Caltech/R. Hurt (IPAC).
3.- Com seria veure el cel des de la superfície del planeta TRAPPIST-1f. En estar el planeta ancorat per les marees a l’estel, la cara nocturna estarà congelada mentre que la cara diürna tindria aigua líquida. NASA/JPL-Caltech/T. Pyle (IPAC).
4.- Observacions infraroges del Spitzer Space Telescope del sistema de set planetes que orbiten l’estel TRAPPIST-1. Es veu el canvi de lluminositat quan el planeta passa per davant de l’estel. Aquestes observacions varen permetre determinar molt precisament la grandària, distància a l’estel, la massa i la densitat dels planetes. NASA/JPL-Caltech/M. Gillon (Univ. of Liège, Belgium).
5.- Comparació del sistema de TRAPPIST amb el sistema solar interior. NASA/JPL-Caltech/R. Hurt, T. Pyle (IPAC).
6.- Comparació de les zones habitables del sistema de TRAPPIST amb el sistema solar interior. NASA//JPL-Caltech.
7.- TRAPPIST-1 Planets – Flyaround Animation. NASA/JPL-Caltech.
Avui dilluns 14 de març la millor Europa, la científica i tecnològica, començarà a fer efectiu un gran repte.
Amb l’ambiciós programa ExoMars 2016-2018 es llançarà decidida a l’exploració del planeta Mart amb naus en òrbita, nau de descens, robots exploradors i amb la missió final de portar mostres del planeta a la Terra pels vols del 2020.
A les 10:31 h, des del Cosmòdrom de Baikonur al Kazakhstan es llançarà a l’espai la primera missió, l’ExoMars 2016, col·laboració entre l’Agència Espacial Europea (ESA) i l’Agència Espacial Russa (Roscosmos). La missió que arribarà a l’octubre a Mart, està formada per un orbitador, el Trace Gas Orbiter (TGO) i un aterrador, Schiaparelli, que bàsicament és un dispositiu per provar nova tecnologia europea per a l’aterratge amb paracaigudes i desplegament d’uns instruments. Bàsicament els que els nord-americans de la NASA fan des de fa anys fent aterrar a Mart missions de diverses maneres (Viking, Mars Pathfinder, Oportunity i Curiosity) i que la tecnologia europea encara no s’havia atrevit a fer.
Però que s’hi busca en Mart? No hi ha massa naus en òrbita i robots en la superfície?
El programa Exomars tracta de resoldre una de les grans preguntes que ens fem sobre el planeta Mart. Donat que ja sabem que en els primers anys del planeta va gaudir d’unes condicions ben semblants a les de la Terra, amb una atmosfera més gruixuda i humida, amb rius i un gran oceà a l’hemisferi nord, ¿la vida va aparéixer a Mart tal com ho féu al nostre planeta? ¿Hi ha encara algun éssers vius o traces d’una vida passada?
La troballa recent de metà a l’atmosfera del planeta roig és, potser, una clau per contestar aquestes preguntes. El gas metà (CH4) és una molècula que a l’atmosfera terrestre prové en un 90% d’organismes vius, per exemple de la descomposició de matèria orgànica per bacteris. Ara bé, la llum ultraviolada del Sol destrueix les molècules en uns 300-600 anys que manera que sense fonts continues de gas metà ja fa anys que no s’hi detectaria a l’atmosfera terrestre.
A Mart s’han detectat concentracions de metà els anys 2003 i 2006 en tres zones: Terra Sabae, Nili Fossae i Syrtis Major, llocs on se sap que fa anys l’aigua líquida va fluir en elles. El metà no pot haver estat milers d’anys ahí ja que la radiació solar l’hagués ja destruït. ¿Vol dir això que hi ha actualment algun tipus de vida amagada al subsol marcià? Això sembla fantàstic.
Abans de fer festa cal saber que hi ha una altra possibilitat per a la presència del gas a l’atmosfera molt més trivial. Diversos processos geològics poden produir metà com l’oxidació del ferro i que pot quedar enganxat en estructures com els hidrats de gas que va soltant el gas a poc a poc. La serpentinització també pot produir un metà abiòtic. Pensem que a la Terra això donaria compte del 10% del metà atmosfèric terrestre.
El comunicat d’ESA abans del llançament d’ExoMars 2016 diu:
TGO farà un inventari detallat dels gasos de l’atmosfera de Mart, amb especial interès en gasos rars com el metà, que implica que hi ha una font activa, actual. TGO té com a objectiu mesurar la seua dependència geogràfica i estacional i ajudar a determinar si es deriva d’una font geològica o biològica. Mentrestant, Schiaparelli demostrarà una gamma de tecnologies que permeten un aterratge controlat en Mart en preparació per a futures missions. Després d’un viatge de set mesos, l’aterrador es separarà de la TGO el 16 d’octubre i aterrarà a Mart el 19 d’octubre, i tindrà diversos dies d’activitats. TGO entrarà llavors en òrbita al voltant del planeta vermell i tindrà per davant la seua excitant missió científica d’uns anys de durada. També servirà com una retransmissió de dades per a la segona missió ExoMars, que comprendrà un vehicle robòtic i una plataforma de ciència de superfícies, previst per al seu llançament en 2018. També proporcionarà retransmissió de dades per a vehicles d’exploració de la NASA … El llançament de ExoMars 2016 marcarà l’inici d’una nova era de l’exploració de Mart per a Europa.
La millor Europa, la científica i tecnològica, es llança a l’aventura d’explorar un planeta fascinant.
Imatge:
1.- Trace Gas Orbiter i Schiaparelli, Baikonur cosmodrome, Kazakhstan, 29 febrer 2016. ESA – S. Bayon
2.- Trace Gas Orbiter i separació del Schiaparelli, ESA/ATG medialab.
3.- Visió general de l’entrada, el descens i la seqüència d’aterratge a Mart Schiaparelli, amb el temps aproximat, l’altitud i la velocitat dels esdeveniments clau que s’indiquen. ESA/ATG medialab.
Estem sols a l’univers? Poc a poc s’està tractant de respondre la pregunta. La recerca de civilitzacions tecnològiques s’ha fet fins ara amb l’observació individual d’estels semblants al nostre Sol o d’estels amb característiques especials. Però l’estudi es pot fer molt més ràpidament si, en lloc de tractar d’escoltar les comunicacions dels extraterrestres, tractem de descobrir la seua “petjada ecològica” a nivell de tota una galàxia.
La idea de la recerca de senyals passius d’una civilització alienígena ja va ser proposada fa molts anys per Freeman Dyson,, en la proposta d’esfera de Dyson: s’ha d’esperar que, al cap d’uns pocs milers d’anys de la seua entrada en l’etapa de desenvolupament industrial, les espècies intel·ligents s’haurien de trobar ocupant una biosfera artificial que envolte per complet la seva estrella mare.
És a dir que les suposades civilitzacions anirien aprofitant els recursos de les seues estrelles per als seus propòsits tecnològics. Però el que no podran evitar és que la seua tecnologia, per avançada que siga, emeta calor. I aquest calor radiarà en forma d’ones infraroges que podran ser detectades des de la Terra.
Aquesta idea té l’inconvenient que és difícil distingir l’origen últim d’aquest calor residual ja que podria provindre de fonts naturals i no de cap tecnologia avançada.
Fa uns dies un equip del Centre d’Exoplanetes i Mons Habitables de la Universitat Penn State donava a conéixer un estudi realitzat amb l’observatori orbital WISE de la NASA que observa, precisament en l’infraroig mitjà. Després d’analitzar 100.000 galàxies del seu catàleg i de cercar senyals de vida extraterrestre altament avançada, no ha aconseguit trobar proves de civilitzacions avançades.
“La idea darrere de la nostra investigació és que si una galàxia sencera haguera sigut colonitzada per una civilització avançada en viatges espacials, l’energia produïda per les tecnologies d’aquesta civilització serien detectables en longituds d’ona de l’infraroig mitjà, exactament la radiació per a la qual va ser dissenyat el satèl·lit WISE amb altres propòsits astronòmics“, afirma Jason T. Wright, qui va concebre i va dur a terme la investigació.
“Si una civilització avançada en viatges espacials empra grans quantitats d’energia dels estels de la seua galàxia per a alimentar computadores, vols espacials, comunicacions o alguna cosa que encara no podem imaginar, la termodinàmica fonamental ens diu que aquesta energia deu ser radiada en forma de calor a longituds d’ona de l’infraroig mitjà“, afirma Wright. “És la mateixa física bàsica que fa que la teua computadora radie calor mentre està en funcionament“.
Roger Griffith, autor principal de la investigació, va examinar quasi tot el catàleg de deteccions de WISE – quasi 100 milions d’entrades – cercant objectes que pogueren ser galàxies emetent massa radiació en l’infraroig mitjà. Posteriorment va examinar individualment i va caracteritzar al voltant de 100.000 de les galàxies més prometedores. D’aquestes, van descobrir que unes 50 galàxies tenen un nivell molt alt de radiació infraroja. Ara caldrà fer el més difícil: distingir si es a causa de processos astronòmics normals o si indica la presència d’una civilització altament avançada.
En qualsevol cas, el resultat de la no detecció de galàxies òbviament plenes d’alienígenes és interessant. “El nostre resultat significa que, de les 100.000 galàxies que WISE va poder observar amb suficient detall, cap d’elles està extensament habitada per una civilització alienígena que empre gran part de la llum dels estels de la seua galàxia per als seus propòsits. Açò és interessant perquè aquestes galàxies tenen milers de milions d’anys d’edat, per la qual cosa han tingut temps suficient per a estar plenes de civilitzacions alienígenes, si és que existeixen. O bé no existeixen o no empren tanta energia que ens permeta reconèixer-les“, afirma Wright.
Imatge 1: Emissió en l’infraroig mitjà de la gran galàxia Andròmeda, tal com va ser observada pel telescopi espacial WISE de NASA. El color taronja representa l’emissió causada pel calor dels estels que s’estan format en els braços espirals de la galàxia. NASA/JPL-Caltech/WISE Team.
Imatge 2: Visió artística de la missió WISE.
Imatge 3: Diagrama d’una esfera de Dyson d’una unitat astronòmica de radi centrada en el Sol. Wikipedia Commons.
La troballa continuada de planetes al voltant d’estels llunyans ha situat la Terra en el lloc que li pertoca en l’evolució estel·lar. El nostre planeta no seria més que un d’entre tants en l’oceà còsmic. Però, aquests dies, el descobriment, per primera vegada, de molècules orgàniques complexes al voltant d’un estel acabat de nàixer és un pas més per reafirmar-nos en la idea que l’existència de la vida en el nostre planeta pot ser conseqüència directa de l’evolució estel·lar. En definitiva, que, nosaltres, finalment. som pols d’estels, fills de les estrelles.
Aquestes molècules complexes, components essencials per a la construcció de la vida, s’han trobat en el disc protoplanetari que gira al voltant d’un estel jove. D’aquest disc de residus sobrants de la formació de l’estel central potser ja s’estan formant els futurs planetes del sistema estel·lar tal com passà al nostre sistema solar fa un 4500 milions d’anys.
El conjunt de radiotelescopis ALMA (Atacama Large Millimeter/submillimeter Array) situat al nord de Xile ha fet possible aquest descobriment en poder captar les dèbils ones de ràdio que emeten les molècules complexes estudiades. Aquest fet confirma que les condicions que van donar lloc al naixement de la Terra i el Sol no són úniques en l’univers. Els resultats es publiquen en el número d’avui de la revista Nature.
ALMA va estudiar l’estel jove MWC 480, un estel amb només un milió d’anys d’existència. En comparació, el Sol té uns 5.000 milions d’anys. El disc protoplanetari que envolta aquest estel conté grans quantitats d’acetonitril també anomenat cianur de metil (CH3CN), una molècula complexa basada en el carboni. Però les quantitats trobades no són poques ja que es calcula que hi ha suficient cianur de metil al voltant de MWC 480 com per a omplir tots els oceans de la Terra.
Tant aquesta molècula com el seu parent més simple, el molt tòxic àcid cianhídric (HCN), van ser trobats en els fredes vores del disc de residus acabat de formar al voltant de l’estel. La regió on s’hi situarien aquestes molècules complexes seria l’anàloga a la del cinturó de Kuiper — la zona de Plutó, el regne dels planetesimals gelats i dels cometes en el nostre Sistema Solar, més enllà de Neptú.
I és que el cinturó de Kuiper conté una gran quantitat de cometes que encara conserven, des del temps en què es van formar els planetes, la informació original de la química primerenca del Sistema Solar. Es creu que els cometes i els asteroides del Sistema Solar exterior van enriquir al jove planeta Terra amb aigua i molècules orgàniques, ajudant a preparar l’etapa en la qual es desenvoluparia la vida primigènia. Per aquesta raó és tan important estudiar de prop els cometes i els seus gels per esbrinar l’origen dels oceans de la Terra i la seua contribució a l’origen de la vida.
“Els estudis de cometes i asteroides mostren que la nebulosa solar que va generar al Sol i els planetes era rica en aigua i compostos orgànics complexos“, assenyala Karin Öberg, astrònoma del Centre Harvard-Smithsonian d’Astrofísica de Cambridge, Massachusetts (EUA) i autora principal del nou article.
“Ara tenim encara més evidències que aquesta mateixa química existeix en altres parts de l’univers, en les regions que podrien formar sistemes estel·lars no gaire diferents al nostre“. Öberg assenyala que açò resulta especialment interessant, atès que les molècules que es troben en MWC 480 també es troben en concentracions similars en els cometes estudiats de ben a prop en el nostre Sistema Solar.
L’estel MWC 480, que té aproximadament dues vegades la massa del Sol, està a uns 455 anys llum, en la regió de formació estel·lar de Taure. El seu disc circumdant està en les primeres etapes de desenvolupament — és a dir, fa poc que ha començat a condensar-se a partir d’una freda i fosca nebulosa de gas i pols.
Amb ALMA i amb altres telescopis s’han arribat també a detectar signes evident de formació de planetes en el disc encara que caldrà fer observacions de major resolució per confirmar-ho.
Des de fa temps, els astrònoms saben que els foscos i freds núvols interestel·lars, on es formen els estels, són eficients fàbriques de molècules orgàniques complexes, incloent-hi un grup de molècules conegudes com a cianurs. Els cianurs i, en concret, el cianur de metil, són importants perquè contenen enllaços carboni–nitrogen: aquests enllaços són essencials per a la formació dels aminoàcids, són la base per a la creació de les proteïnes i constitueixen els components essencials per a la construcció de la vida.
No obstant açò, fins ara no estava molt clar si aquestes mateixes molècules orgàniques complexes es formen i sobreviuen de forma habitual en l’ambient energètic d’un sistema solar recentment creat, on els xocs i la radiació poden trencar fàcilment els enllaços químics.
Gràcies a la notable capacitat d’ALMA, els astrònoms han pogut comprovar, en les últimes observacions, que aquestes molècules no solament sobreviuen, sinó que prosperen.
I el més important: les molècules detectades per ALMA són molt més abundants que les trobades en els núvols interestel·lars. Açò revela als astrònoms que els discos protoplanetaris són molt eficients en la formació de molècules orgàniques complexes i que són capaces de formar-les en escales de temps relativament curtes.
Atès que aquest sistema continua evolucionant, els astrònoms especulen que és probable que les molècules orgàniques, protegides i fora de perill a l’interior de cometes i d’altres cossos gelats, siguen transportats a entorns més enriquidors per a la vida, com ara planetes situats en la zona d’habitabilitat del sistema estel·lar.
“Gràcies a l’estudi d’exoplanetes, sabem que el Sistema Solar no és l’únic que té planetes o l’únic que compta amb abundància d’aigua“, conclou Öberg. “Ara sabem que tampoc som únics quant a la nostra química orgànica. Una vegada més, hem après que no som especials. Des del punt de vista de la vida en l’univers, és una bona notícia”.
L’evolució de les plantes sobre la Terra les ha proveït d’un sistema per aconseguir energia del Sol: la fotosíntesi. Amb aquest procés, l’energia del sol fixa el carboni del CO2 atmosfèric i s’emet oxigen com a subproducte.Si aquest sistema d’aconseguir aliment és tan útil, podem pensar que l’evolució biològica de planetes al voltant d’altres estels haurà seguit un procés similar.
La temperatura d’un estel determina la radiació que reben els seus planetes. En el nostre sol, amb una temperatura superficial d’uns 6000 graus, d’acord amb la llei de Planck i la llei de desplaçament de Wien, el màxim d’emissió es troba al voltant de 5000 Å. Per això veiem el sol de color groc. Les plantes aprofiten aquesta radiació per a la funció clorofílica, aborbeixen radiació llevat del color verd. Encara que la reacció té només una eficiència fotosintètica del 3 al 6% és suficient per a mantindre les plantes verdes sobre la terra.
Que passa, però, en les possibles bioesferes de planetes al voltant d’altres estrelles? La majoria són estels menuts i freds anomenats nans rojos. La seua temperatura superficial és d’uns 3000 graus. Que passarà aleshores? Les plantes han d’aprofitar millor la poca radiació rebuda i amb molt poca energia. Per això els arbres poden ser d’altres colors i fins i tot negres per no deixar escapar cap bri d’energia rebuda.
A més a més si tenim un planeta que gira al voltant d’un sistema estel·lar amb dos sols, de temperatures distintes, pot produir-se un fenomen ben curiós. Cada planta pot especialitzar-se en un sol concret i presentar un ventall de colors més variat que a la nostre Terra, sobretot si un dels sols il·lumina certes zones del planeta durant més temps. O, com ja he dit abans, els arbres poden ser negres o grisos per aprofitar tota la energia que els arriba.
Aquestes son les conclusions a les quals ha arribat Jack O’Malley-James de la Universitat de St. Andrews, Escòcia, que treballa en la seua tesi doctoral, analitzat aquest tema,
“Les nostres simulacions suggereixen que planetes en sistemes estel·lars múltiples poden hostatjar formes exòtiques de plantes familiars a la Terra. Plantes amb sols nans rojos dèbils, per exemple, poden aparèixer negres als nostres ulls, absorbint tot el rang de la llum visible per a usar tanta llum com siga possible. També podrien ser capaços d’usar radiació infraroja o ultraviolada per fer funcionar la fotosíntesi. Per a planetes que orbiten dues estrelles com el nostre sol, la radiació perjudicial d’erupcions estel·lars intenses pot portar les plantes a desenvolupar les seua pròpies proteccions de bloqueig dels ultraviolats o microorganismes fotosintetitzadors que es poden moure en resposta a una erupció solar sobtada“, ha dit O’Malley-James.
Els aminoàcids són molècules que constitueixen les peces bàsiques de la vida. Amb només una combinació de 20 classes diferents es poden construir les proteines, que formen les estructures de la vida.
L’anàlisi exhaustiva de les mostres del cometa Wild 2 recollides per la missió Stardust l’any 2004 i portades a la Terra el 2006 ha mostrat la presència de l’aminoàcid glicina. Fa dos anys i mig, la revista Science ja va publicar els estudis preliminars de les mostres cometàries. En vaig fer un apunt ben detallat on resaltava els resultats i també el novedós material de captura, l’aerogel.
Ara es descobreix glicina, un dels aminoàcids essencials en el essers vius. És tan comú a la Terra que primerament es pensà que la seua presència a l’aerogel era deguda a una contaminació biològica accidental durant el muntatge o desmuntage de l’instrument de captura. Tanmateix la gran abundància de l’isòtop del carboni 13C en la molècula de glicina en lloc de l’usual en la Terra 12C ha reforçat la idea que és realment un aminoàcid extraterrestre.
També s’han detectat altres aminoàcids en la mostra però en tan poques quantitats que han fet impossible l’anàlisi. Tanmateix la glicina, amb només 1 bilionèsima part d’un gram, ha estat l’únic aminoàcid mesurable.
La doctora Jamie Elsila del Goddard Space Flight Center de la NASA, afirma “El nostre descobriment reforça la teoria que alguns dels ingredients de la vida es formaren a l’espai i foren dipositats sobre la Terra fa molt de temps per meteorits i impactes de cometes.” Elsila és l’autora principal d’un article sobre aquesta recerca que eixirà publicat a la revista Meteoritics and Planetary Science. També remarca que la recollida, en un futur, de mostres del nucli d’un cometa, no només de la cua, probablement ens donarà una mescla més rica d’aminoàcids,
Podeu llegir la notícia completa a aquesta pàgina de la NASA.
La vida podria estar molt més estesa del que pensem a la vista d’aquest nou descobriment.
Foto: Imatge artística de la nau Stardust començant la seua ruta a través del gas i de la pols que envolta el cometa Wild 2. NASA/JPL