Descoberts set planetes de grandària terrestre en una estrella pròxima

L’expectació era gran aquest vespre per l’anunciada conferència de premsa de la NASA. Ja sabíem que l’anunci estaria relacionat amb els exoplanetes, planetes situats més enllà del sistema solar. De fet, un dels objectius de l’astronomia del segle XXI és la detecció de planetes tipus Terra. I amb puntualitat, a les 19 h. s’ha donat la gran notícia: el descobriment de set planetes d’una grandària similar al nostre i que giren al voltant de l’estel TRAPPIST-1. La troballa d’aquest sistema de set mons rocosos, tots ells amb possibilitats d’aigua en la superfície, és un pas endavant molt important per la recerca de vida fora de la Terra. El descobriment s’ha publicat en la revista Nature (ací resum).

L’estel TRAPPIST-1 es troba a uns 39 anys llum de distància i la podem trobar a la constel·lació d’Aquarius. És un nan roig, estel que es caracteritza per tindre molt poca massa. Com a conseqüència d’això, en aquests tipus d’estels el ritme de crema de l’hidrogen en el nucli estel·lar és tan lent que s’estima que poden durar més que tota la història de l’univers. Són bastant fredes ja que la temperatura superficial no arriba als 4000 K.

Com ja vaig contar en el cas de Proxima Centauri, també nan roig, i el planeta descobert al seu voltant, un estel tan dèbil i fred presenta molt prop seu la zona d’habitabilitat, regió al voltant de l’estel on l’aigua es pot mantindre líquida. I, de fet, tres dels planetes descoberts cauen dintre d’aquesta zona privilegiada. La vida, tal com la coneixem, necessita aigua líquida per mantenir-se i, aquesta zona és un bon lloc on començar a buscar vida fora de la Terra.

L’equip internacional que ha descobert el nou sistema planetari està liderat per l’astrònom de la Universitat de Lieja (Bèlgica), Michaël Gillon. Des de fa uns anys el seu grup s’ha dedicat a buscar planetes al voltant d’estel nans roigs de poca massa. De fet, aquests estels han estat sistemàticament ignorats ja que la missió Kepler de la NASA, dedicada a buscar exoplanetes, només apunta a estels semblants al Sol, molt més calents.

Aquest astrònom porta endavant la col·laboració TRAPPIST (The Transiting Planets and Planetesimals Small Telescope) que tracta de “caçar” planetes amb un parell de telescopis de 60 cm: un en Marroc, per a l’estudi del cel de l’hemisferi nord i altre en Xile, per al cel de l’hemisferi sud. Per trobar els possibles planetes al voltant d’un estel s’usa el mètode dels trànsits: observar la lleu baixada de lluminositat (menor d’1%)  que produeix el pas d’un planeta per davant del seu estel.

El mes de maig passat l’equip publicà els resultats d’una campanya d’observació sobre l’estel anomenada TRAPPIST-1. S’havien descobert tres planetes al voltant de l’estel. Dos dels planetes, TRAPPIST-1b i TRAPPIST-1c, eren segurs. Tanmateix, respecte al tercer planeta, TRAPPIST-1c, hi havia dubtes, ja que només van poder veure dos senyals del suposat objecte.

Així que, per assegurar-se, van demanar poder utilitzar el Spitzer Space Telescope, un telescopi espacial especialitzat en observar en la banda de l’infraroig. Cal recordar que la dèbil estrella brilla més en aquestes longituds d’ona. Durant 20 dies consecutius varen poder observar el sistema TRAPPIST-1 per caracteritzar finalment el fugitiu planeta. El resultat, però, no va ser el que s’esperava. Realment, sota l’aparença d’un únic planeta se n’amagaven quatre, amb períodes orbitals d’uns 4, 6, 9 i 12 dies. A més, Spitzer va revelar el senyal dèbil d’un altre planeta addicional TRAPPIST-1h. Hi havia, per tant, almenys set planetes al voltant de l’estel.

Comparació del sistema TRAPPIST-1 i el sistema solar interior.

La proximitat dels valors dels períodes orbitals dels sis primers planetes a divisions de nombres enters petits (8/5, 5/3, 3/2, 3/2 i 4/3, respectivament) ens indica que les òrbites dels planetes són ressonants i que, segurament, els planetes es formaren més lluny del seu estel del que estan ara i que posteriorment migraren a les posicions actuals. A més a més, les mesures precises de Spitzer demostren que els planetes interactuen entre ells, i, a més, en estar tan prop de l’estel, hi poden estar lligats per efectes de marea, mostrant-li sempre la mateixa cara, tal com passa amb la Lluna respecte de la Terra. Tindrien d’aquesta manera una rotació síncrona: el període de rotació i de translació de cada planeta serien iguals. Per tant cada cara dels planetes té dia/nit perpetua. Això determinarà el clima d’aquests cossos ja que presentaran vents intensos que bufen de l’hemisferi diürn al nocturn.

En principi la presència d’aigua líquida en el sistema planetari seria possible només per als planetes e, f, g que es troben ben endins de la zona habitable del sistema. Tanmateix els autors de l’article afirmen que la rotació síncrona de tots els planetes seria la causa d’altres configuracions no previstes, com ara l’existència de planetes amb superfícies totalment congelades, amb oceans interiors en la part nocturna, mentre la part diürna, més càlida, tindria una superfície lliure de gels. La possibilitat de vida en aquest tipus de planetes ha estat estudiada. El vídeo mostra una visió artística del possible aspecte d’aquests planetes.

La troballa és realment extraordinària. L’astrofísica  Elisa Quintana, del Goddard Space Flight Center de la NASA i membre de l’equip TRAPPIST comenta: “Tindre aquest sistema de set planetes és realment increïble. Us podeu imaginar la quantitat d’estrelles properes que podrien albergar munts i munts de planetes”

Aquest sistema és un laboratori excel·lent per estudiar l’evolució dels petits planetes com el nostre. A més a més, les seues atmosferes podran ser analitzades fàcilment pels futurs grans telescopis en construcció com l’E-ELT o pel James Webb Space Telescope. Buscar, i potser trobar, traces de vida a través de gasos bio-marcadors com el metà, l’ozó o d’altres serà un repte per a la pròxima dècada.

De tots els mons que hem vist en la ciència ficció, aquests són encara més extraordinaris“, diu Hannah Wakeford, un científic que treballa en exoplanetes a Goddard.

Imatges:

1.- Representació artística dels set planetes descoberts. NASA/JPL-Caltech/R. Hurt, T. Pyle (IPAC).
2.- Els set planetes al voltant de TRAPPIST-1 tal com es veurien des de la Terra amb un telescopi hipotètic de gran potència. NASA/JPL-Caltech/R. Hurt (IPAC).
3.-  Com seria veure el cel des de la superfície del planeta TRAPPIST-1f. En estar el planeta ancorat per les marees a l’estel, la cara nocturna estarà congelada mentre que la cara diürna tindria aigua líquida. NASA/JPL-Caltech/T. Pyle (IPAC).
4.- Observacions infraroges del  Spitzer Space Telescope del sistema de set planetes que orbiten l’estel TRAPPIST-1. Es veu el canvi de lluminositat quan el planeta passa per davant de l’estel. Aquestes observacions varen permetre determinar molt precisament la grandària, distància a l’estel, la massa i la densitat dels planetes. NASA/JPL-Caltech/M. Gillon (Univ. of Liège, Belgium).
5.- Comparació del sistema de TRAPPIST amb el sistema solar interior. NASA/JPL-Caltech/R. Hurt, T. Pyle (IPAC).
6.- Comparació de les zones habitables del sistema de TRAPPIST amb el sistema solar interior. NASA//JPL-Caltech.
7.- TRAPPIST-1 Planets – Flyaround Animation. NASA/JPL-Caltech.

Europa es llança a l’exploració de Mart

ExoMars2016_Baikonur_20160229

Avui dilluns 14 de març la millor Europa, la científica i tecnològica, començarà a fer efectiu un gran repte.

Amb l’ambiciós programa ExoMars 2016-2018 es llançarà decidida a l’exploració del planeta Mart amb naus en òrbita, nau de descens, robots exploradors i amb la missió final de portar mostres del planeta a la Terra pels vols del 2020.

A les 10:31 h, des del Cosmòdrom de Baikonur al Kazakhstan es llançarà a l’espai la primera missió, l’ExoMars 2016, col·laboració entre l’Agència Espacial Europea (ESA) i l’Agència Espacial Russa (Roscosmos). La missió que arribarà a l’octubre a Mart, està formada per un orbitador,  el Trace Gas Orbiter (TGO) i un aterrador, Schiaparelli, que bàsicament és un dispositiu per provar nova tecnologia europea per a l’aterratge amb paracaigudes i desplegament d’uns instruments. Bàsicament els que els nord-americans de la NASA fan des de fa anys fent aterrar a Mart missions de diverses maneres (Viking, Mars Pathfinder, Oportunity i Curiosity) i que la tecnologia europea encara no s’havia atrevit a fer.

Però que s’hi busca en Mart? No hi ha massa naus en òrbita i robots en la superfície?

ExoMars2016_TGO_EDM_Separation_20160218_625

El programa Exomars tracta de resoldre una de les grans preguntes que ens fem sobre el planeta Mart. Donat que ja sabem que en els primers anys del planeta va gaudir d’unes condicions ben semblants a les de la Terra, amb una atmosfera més gruixuda i humida, amb rius i un gran oceà a l’hemisferi nord, ¿la vida va aparéixer a Mart tal com ho féu al nostre planeta? ¿Hi ha encara algun éssers vius o traces d’una vida passada?

La troballa recent de metà a l’atmosfera del planeta roig és, potser, una clau per contestar aquestes preguntes. El gas metà (CH4) és una molècula que a l’atmosfera terrestre prové en un 90% d’organismes vius, per exemple de la descomposició de matèria orgànica per bacteris. Ara bé, la llum ultraviolada del Sol destrueix les molècules en uns 300-600 anys que manera que sense fonts continues de gas metà ja fa anys que no s’hi detectaria a l’atmosfera terrestre.

ExoMars2016_DescentInfographic_20160223_625

A Mart s’han detectat concentracions de metà els anys 2003 i 2006 en tres zones: Terra Sabae, Nili Fossae i Syrtis Major, llocs on se sap que fa anys l’aigua líquida va fluir en  elles. El metà no pot haver estat milers d’anys ahí ja que la radiació solar l’hagués ja destruït. ¿Vol dir això que hi ha actualment algun tipus de vida amagada al subsol marcià? Això sembla fantàstic.

Abans de fer festa cal saber que hi ha una altra possibilitat per a la presència del gas a l’atmosfera molt més trivial. Diversos processos geològics poden produir metà com l’oxidació del ferro i que pot quedar enganxat en estructures com els hidrats de gas que va soltant el gas a poc a poc. La serpentinització també pot produir un metà abiòtic. Pensem que a la Terra això donaria compte del 10% del metà atmosfèric terrestre.

El comunicat d’ESA abans del llançament d’ExoMars 2016 diu:

TGO farà un inventari detallat dels gasos de l’atmosfera de Mart, amb especial interès en gasos rars com el metà, que implica que hi ha una font activa, actual. TGO té com a objectiu mesurar la seua dependència geogràfica i estacional i ajudar a determinar si es deriva d’una font geològica o biològica. Mentrestant, Schiaparelli demostrarà una gamma de tecnologies que permeten un aterratge controlat en Mart en preparació per a futures missions. Després d’un viatge de set mesos, l’aterrador es separarà de la TGO el 16 d’octubre i aterrarà a Mart el 19 d’octubre, i tindrà diversos dies d’activitats. TGO entrarà llavors en òrbita al voltant del planeta vermell i tindrà per davant la seua excitant missió científica d’uns anys de durada. També servirà com una retransmissió de dades per a la segona missió ExoMars, que comprendrà un vehicle robòtic i una plataforma de ciència de superfícies, previst per al seu llançament en 2018. També proporcionarà retransmissió de dades per a vehicles d’exploració de la NASA … El llançament de ExoMars 2016 marcarà l’inici d’una nova era de l’exploració de Mart per a Europa.

La millor Europa, la científica i tecnològica, es llança a l’aventura d’explorar un planeta fascinant.

Imatge:
1.- Trace Gas Orbiter i Schiaparelli, Baikonur cosmodrome, Kazakhstan, 29 febrer 2016. ESA – S. Bayon
2.- Trace Gas Orbiter i separació del Schiaparelli, ESA/ATG medialab.
3.- Visió general de l’entrada, el descens i la seqüència d’aterratge a Mart Schiaparelli, amb el temps aproximat, l’altitud i la velocitat dels esdeveniments clau que s’indiquen. ESA/ATG medialab.

No hi ha civilitzacions extraterrestres òbvies en 100.000 galàxies

The immense Andromeda galaxy, also known as Messier 31 or simply M31, is captured in full in this new image from NASA's Wide-field Infrared Survey Explorer, or WISE. The mosaic covers an area equivalent to more than 100 full moons, or five degrees across

Estem sols a l’univers? Poc a poc s’està tractant de respondre la pregunta. La recerca de civilitzacions tecnològiques s’ha fet fins ara amb l’observació individual d’estels semblants al nostre Sol o d’estels amb característiques especials. Però l’estudi es pot fer molt més ràpidament si, en lloc de tractar d’escoltar les comunicacions dels extraterrestres, tractem de descobrir la seua “petjada ecològica” a nivell de tota una galàxia.

La idea de la recerca de senyals passius d’una civilització alienígena ja va ser proposada fa molts anys per Freeman Dyson,, en la proposta d’esfera de Dyson: s’ha d’esperar que, al cap d’uns pocs milers d’anys de la seua entrada en l’etapa de desenvolupament industrial, les espècies intel·ligents s’haurien de trobar ocupant una biosfera artificial que envolte per complet la seva estrella mare.

És a dir que les suposades civilitzacions anirien aprofitant els recursos de les seues estrelles per als seus propòsits tecnològics. Però el que no podran evitar és que la seua tecnologia, per avançada que siga, emeta calor. I aquest calor radiarà en forma d’ones infraroges que podran ser detectades des de la Terra.

Aquesta idea té l’inconvenient que és difícil distingir l’origen últim d’aquest calor residual ja que podria provindre de fonts naturals i no de cap tecnologia avançada.

Fa uns dies un equip del Centre d’Exoplanetes i Mons Habitables de la Universitat Penn State donava a conéixer un estudi realitzat amb l’observatori orbital WISE de la NASA que observa, precisament en l’infraroig mitjà.  Després d’analitzar 100.000 galàxies del seu catàleg i de cercar senyals de vida extraterrestre altament avançada, no ha aconseguit trobar proves de civilitzacions avançades.

WISE_artist_concept_(PIA17254,_crop)

La idea darrere de la nostra investigació és que si una galàxia sencera haguera sigut colonitzada per una civilització avançada en viatges espacials, l’energia produïda per les tecnologies d’aquesta civilització serien detectables en longituds d’ona de l’infraroig mitjà, exactament la radiació per a la qual va ser dissenyat el satèl·lit WISE amb altres propòsits astronòmics“, afirma  Jason T. Wright, qui va concebre i va dur a terme la investigació.

Si una civilització avançada en viatges espacials empra grans quantitats d’energia dels estels de la seua galàxia per a alimentar computadores, vols espacials, comunicacions o alguna cosa que encara no podem imaginar, la termodinàmica fonamental ens diu que aquesta energia deu ser radiada en forma de calor a longituds d’ona de l’infraroig mitjà“, afirma Wright. “És la mateixa física bàsica que fa que la teua computadora radie calor mentre està en funcionament“.

Roger Griffith,  autor principal de la investigació, va examinar quasi tot el catàleg de deteccions de WISE – quasi 100 milions d’entrades – cercant objectes que pogueren ser galàxies emetent massa radiació en l’infraroig mitjà. Posteriorment va examinar individualment i va caracteritzar al voltant de 100.000 de les galàxies més prometedores. D’aquestes, van descobrir que unes 50 galàxies tenen un nivell molt alt de radiació infraroja. Ara caldrà fer el més difícil: distingir si es a causa de processos astronòmics normals o si indica la presència d’una civilització altament avançada.

Dyson_Sphere_Diagram-ca.svgEn qualsevol cas, el resultat de la no detecció de galàxies òbviament plenes d’alienígenes és interessant. “El nostre resultat significa que, de les 100.000 galàxies que WISE va poder observar amb suficient detall, cap d’elles està extensament habitada per una civilització alienígena que empre gran part de la llum dels estels de la seua galàxia per als seus propòsits. Açò és interessant perquè aquestes galàxies tenen milers de milions d’anys d’edat, per la qual cosa han tingut temps suficient per a estar plenes de civilitzacions alienígenes, si és que existeixen. O bé no existeixen o no empren tanta energia que ens permeta reconèixer-les“, afirma Wright.

Article original: The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. III. The Reddest Extended Sources in WISE. Roger L. Griffith, Jason T. Wright, Jessica Maldonado, Matthew S. Povich, Steinn Sigurđsson, and Brendan Mullan. The Astrophysical Journal Supplement Series Volume 217 Number 2.

Imatge 1: Emissió en l’infraroig mitjà de la gran galàxia Andròmeda, tal com va ser observada pel telescopi espacial WISE de NASA. El color taronja representa l’emissió causada pel calor dels estels que s’estan format en els braços espirals de la galàxia. NASA/JPL-Caltech/WISE Team.

Imatge 2: Visió artística de la missió WISE.

Imatge 3: Diagrama d’una esfera de Dyson d’una unitat astronòmica de radi centrada en el Sol. Wikipedia Commons.

Molècules orgàniques complexes en un jove sistema estel·lar

Artist impression of the protoplanetary disc surrounding the you

La troballa continuada de planetes al voltant d’estels llunyans ha situat la Terra en el lloc que li pertoca en l’evolució estel·lar. El nostre planeta no seria més que un d’entre tants en l’oceà còsmic. Però, aquests dies, el descobriment, per primera vegada, de molècules orgàniques complexes al voltant d’un estel acabat de nàixer és un pas més per reafirmar-nos en la idea que l’existència de la vida en el nostre planeta pot ser conseqüència directa de l’evolució estel·lar. En definitiva, que, nosaltres, finalment. som pols d’estels, fills de les estrelles.

Aquestes molècules complexes, components essencials per a la construcció de la vida, s’han trobat en el disc protoplanetari que gira al voltant d’un estel jove. D’aquest disc de residus sobrants de la formació de l’estel central potser ja s’estan formant els futurs planetes del sistema estel·lar tal com passà al nostre sistema solar fa un 4500 milions d’anys.

El conjunt de radiotelescopis ALMA (Atacama Large Millimeter/submillimeter Array) situat al nord de Xile ha fet possible aquest descobriment en poder captar les dèbils ones de ràdio que emeten les molècules complexes estudiades. Aquest fet confirma que les condicions que van donar lloc al naixement de la Terra i el Sol no són úniques en l’univers. Els resultats es publiquen en el número d’avui de la revista Nature.

ALMA va estudiar l’estel jove MWC 480, un estel amb només un milió d’anys d’existència. En comparació, el Sol té uns 5.000 milions d’anys. El disc protoplanetari que envolta aquest estel conté grans quantitats d’acetonitril també anomenat cianur de metil (CH3CN), una molècula complexa basada en el carboni. Però les quantitats trobades no són poques ja que es calcula que hi ha suficient cianur de metil al voltant de MWC 480 com per a omplir tots els oceans de la Terra.

Tant aquesta molècula com el seu parent més simple, el molt tòxic àcid cianhídric (HCN), van ser trobats en els fredes vores del disc de residus acabat de formar al voltant de l’estel. La regió on s’hi situarien aquestes molècules complexes seria l’anàloga a la del cinturó de Kuiper — la zona de Plutó, el regne dels planetesimals gelats i dels cometes en el nostre Sistema Solar, més enllà de Neptú.

I és que el cinturó de Kuiper conté una gran quantitat de cometes que encara conserven, des del temps en què es van formar els planetes, la informació original de la química primerenca del Sistema Solar. Es creu que els cometes i els asteroides del Sistema Solar exterior van enriquir al jove planeta Terra amb aigua i molècules orgàniques, ajudant a preparar l’etapa en la qual es desenvoluparia la vida primigènia. Per aquesta raó és tan important estudiar de prop els cometes i els seus gels per esbrinar l’origen dels oceans de la Terra i la seua contribució a l’origen de la vida.

Els estudis de cometes i asteroides mostren que la nebulosa solar que va generar al Sol i els planetes era rica en aigua i compostos orgànics complexos“, assenyala Karin Öberg, astrònoma del Centre Harvard-Smithsonian d’Astrofísica de Cambridge, Massachusetts (EUA) i autora principal del nou article.

Ara tenim encara més evidències que aquesta mateixa química existeix en altres parts de l’univers, en les regions que podrien formar sistemes estel·lars no gaire diferents al nostre“. Öberg assenyala que açò resulta especialment interessant, atès que les molècules que es troben en MWC 480 també es troben en concentracions similars en els cometes estudiats de ben a prop en el nostre Sistema Solar.

L’estel MWC 480, que té aproximadament dues vegades la massa del Sol, està a uns 455 anys llum, en la regió de formació estel·lar de Taure. El seu disc circumdant està en les primeres etapes de desenvolupament — és a dir, fa poc que ha començat a condensar-se a partir d’una freda i fosca nebulosa de gas i pols.

Amb ALMA i amb altres telescopis s’han arribat també a detectar signes evident de formació de planetes en el disc encara que caldrà fer observacions de major resolució per confirmar-ho.

Des de fa temps, els astrònoms saben que els foscos i freds núvols interestel·lars, on es formen els estels, són eficients fàbriques de molècules orgàniques complexes, incloent-hi un grup de molècules conegudes com a cianurs. Els cianurs i, en concret, el cianur de metil, són importants perquè contenen enllaços carboni–nitrogen: aquests enllaços són essencials per a la formació dels aminoàcids, són la base per a la creació de les proteïnes i constitueixen els components essencials per a la construcció de la vida.

No obstant açò, fins ara no estava molt clar si aquestes mateixes molècules orgàniques complexes es formen i sobreviuen de forma habitual en l’ambient energètic d’un sistema solar recentment creat, on els xocs i la radiació poden trencar fàcilment els enllaços químics.

Gràcies a la notable capacitat d’ALMA, els astrònoms han pogut comprovar, en les últimes observacions, que aquestes molècules no solament sobreviuen, sinó que prosperen.

I el més important: les molècules detectades per ALMA són molt més abundants que les trobades en els núvols interestel·lars. Açò revela als astrònoms que els discos protoplanetaris són molt eficients en la formació de molècules orgàniques complexes i que són capaces de formar-les en escales de temps relativament curtes.

Atès que aquest sistema continua evolucionant, els astrònoms especulen que és probable que les molècules orgàniques, protegides i fora de perill a l’interior de cometes i d’altres cossos gelats, siguen transportats a entorns més enriquidors per a la vida, com ara planetes situats en la zona d’habitabilitat del sistema estel·lar.

Gràcies a l’estudi d’exoplanetes, sabem que el Sistema Solar no és l’únic que té planetes o l’únic que compta amb abundància d’aigua“, conclou Öberg. “Ara sabem que tampoc som únics quant a la nostra química orgànica. Una vegada més, hem après que no som especials. Des del punt de vista de la vida en l’univers, és una bona notícia”.

Nota de premsa original: Descubiertas moléculas orgánicas complejas en un joven sistema estelar.

Imatge: Il·lustració del disc protoplanetari que envolta al jove estel MWC 48. Crèdit: B. Saxton (NRAO/AUI/NSF).

Arbres negres en planetes amb dos sols

Arbres negres

L’evolució de les plantes sobre la Terra les ha proveït d’un sistema per aconseguir energia del Sol: la fotosíntesi. Amb aquest procés, l’energia del sol fixa el carboni del CO2 atmosfèric i s’emet oxigen com a subproducte.Si aquest sistema d’aconseguir aliment és tan útil, podem pensar que l’evolució biològica de planetes al voltant d’altres estels haurà seguit un procés similar.

La temperatura d’un estel determina la radiació que reben els seus planetes. En el nostre sol, amb una temperatura superficial d’uns 6000 graus, d’acord amb la llei de Planck i la llei de desplaçament de Wien, el màxim d’emissió es troba al voltant de 5000 Å. Per això veiem el sol de color groc.  Les plantes aprofiten aquesta radiació per a la funció clorofílica, aborbeixen radiació llevat del color verd. Encara que la reacció té només una eficiència fotosintètica del 3 al 6% és suficient per a mantindre les plantes verdes sobre la terra.

Que passa, però, en les possibles bioesferes de planetes al voltant d’altres estrelles? La majoria són estels menuts i freds anomenats nans rojos. La seua temperatura superficial és d’uns 3000 graus. Que passarà aleshores? Les plantes han d’aprofitar millor la poca radiació rebuda i amb molt poca energia. Per això els arbres poden ser d’altres colors i fins i tot negres per no deixar escapar cap bri d’energia rebuda.

A més a més si tenim un planeta que gira al voltant d’un sistema estel·lar amb dos sols, de temperatures distintes, pot produir-se un fenomen ben curiós. Cada planta pot especialitzar-se en un sol concret i presentar un ventall de colors més variat que a la nostre Terra, sobretot si un dels sols il·lumina certes zones del planeta durant més temps. O, com ja he dit abans, els arbres poden ser negres o grisos per aprofitar tota la energia que els arriba.

Aquestes son les conclusions a les quals ha arribat Jack O’Malley-James de la Universitat de St. Andrews, Escòcia, que treballa en la seua tesi doctoral, analitzat aquest tema,

Les nostres simulacions suggereixen que planetes en sistemes estel·lars múltiples poden hostatjar formes exòtiques de plantes familiars a la Terra. Plantes amb sols nans rojos dèbils, per exemple, poden aparèixer negres als nostres ulls, absorbint tot el rang de la llum visible per a usar  tanta llum com siga possible. També podrien ser capaços d’usar radiació infraroja o ultraviolada per fer funcionar la fotosíntesi. Per a planetes que orbiten dues estrelles com el nostre sol, la radiació perjudicial d’erupcions estel·lars intenses pot portar les plantes a desenvolupar les seua pròpies proteccions de bloqueig dels ultraviolats o microorganismes fotosintetitzadors que es poden moure en resposta a una erupció solar sobtada“, ha dit O’Malley-James.

Foto: de la web Serenity Pink Black Trees Picture.