De com un forat negre s’engul un estel i no li agrada

Per primera vegada els astrònoms han observat directament la formació i l’expansió d’un doll de matèria ejectat des d’un forat negre supermassiu després que destruïra un estel que va gosar aproximar-se massa al monstre còsmic.

Al gener de 2005 es va detectar en el nucli de la galàxia Arp 299-B, situada a uns 150 milions d’anys llum de la Terra, i en procés de xoc amb una altra galàxia, un brillant esclat de llum que en aquell moment es va considerar causat per una explosió d’un estel supernova. No obstant això, 10 anys continuats d’observacions en diferents longituds d’ona han permès descartar aquesta primera hipòtesi ja que s’ha pogut presenciar com la regió lluminosa s’allargava i s’expandia al llarg dels anys. S’ha conclòs finalment que el fenomen lluminós cal relacionar-lo més bé amb la formació d’un doll de material expulsat pel forat negre supermassiu central de la galàxia després d’estripar una estrella. Els resultats de l’estudi, liderat pels investigadors Seppo Mattila, de la Universitat de Turku (Finlàndia) i Miguel Pérez Torres, de l’Institut d’Astrofísica d’Andalusia (IAA-CSIC), i on també participen Petar Mimica i Miguel Ángel Aloy, investigadors del Departament d’Astronomia i Astrofísica de la Universitat de València, es publiquen avui a la revista ‘Science’.

Segons els científics, el descobriment va ser una sorpresa. L’esclat inicial de llum infraroja fou observada dins d’un projecte més ample per detectar explosions supernova, en Arp 299, un parell de galàxies en col·lisió, en les quals s’han vist nombroses supernoves i, per això, se l’anomena la “factoria supernova”. Per això, l’esclat de llum fou considerat com una explosió estel·lar més. Tanmateix sis anys després, el 2011, les observacions usant ones de ràdio mostraven una imatge allargada, ben diferent a una imatge circular típica de l’expansió del material d’una supernova. Els anys següents, fins i tot, el monitoratge de l’objecte mostrà que l’objecte lluminós no només continuava allargassat sinó que fins i tot creixia. Aquestes observacions van permetre determinar que el material en el doll es movia a una velocitat d’uns 75.000 quilòmetres per segon (un quart de la velocitat de la llum). Estava clar que allò observat era un doll expulsat des d’un objecte compacte com un forat negre després que aquest estripara, destruïra i s’engolira un estel sencer amb una massa equivalent a dos Sols.

Només s’han detectat un nombre reduït d’aquestes morts estel·lars, anomenades esdeveniments de disrupció de marea (TDE) , ja que l’estel és estirat pel forat negre fins a trencar-se, tot i que els científics han plantejat la hipòtesi que poden ser un esdeveniment molt comú. Els astrònoms teòrics han conclòs que el material extret de l’estrella condemnada forma un disc giratori al voltant del forat negre, emet raigs X intensos així com llum visible, i, a continuació forma uns immensos dolls de material calent cap a fora des de les zones polars del monstre còsmic a gairebé la velocitat de la llum.

La majoria de les galàxies alberguen en les seues regions centrals forats negres supermassius, que contenen fins a milers de milions de vegades la massa del Sol. Es tracta d’objectes amb un camp gravitatori tan intens que ni la llum pot escapar, i mostren una estructura típica composta per un disc de gas i pols, l’anomenat disc d’accreció, que absorbeix el material del seu entorn.  En els casos en què el forat negre es troba actiu, es forma també un parell de dolls de partícules a velocitats relativistes que emergeixen dels pols. Aquest fenomen d’ejecció de dolls és molt comú en ràdio-galàxies, quàsars i genèricament en el Nuclis Actius de Galàxies. AGNs.

No obstant això, els forats negres supermassius passen una gran quantitat de temps sense devorar res, pel que no estan particularment actius. Els esdeveniments de disrupció per marea, com l’ocorregut en Arp299-B, ens ofereixen una oportunitat única per estudiar el veïnatge d’aquests poderosos objectes”, explica Miguel Pérez-Torres. I afegeix Seppo Mattila que pel fet que les regions centrals de les galàxies contenen molta pols, que absorbeix la llum en raigs X i òptic, “és possible que aquests successos siguen molt més habituals però que han passat desapercebuts”.

Més informació:

S. Mattila, M. Pérez-Torres, A. Efstathiou, P. Mimica, M. Fraser, E. Kankare, A. Alberdi, M. Á. Aloy, et al. A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger. Science. DOI: 10.1126/science.aao4669


Nota de premsa de la Universitat de València

Nota de premsa del National Radio Astronomy Observatory

Nota de premsa del Joint Institute for VLBI ERIC

Imatge:

1.- Una imatge artística de l’esdeveniment de disrupció per marea (TDE) a Arp 299-B. A la dreta es veu com la gran gravetat del forat negre supermassiu atrapa l’estrella, n’estira el material cap al disc d’acrecció i llança un raig de partícules cap a l’exterior. A l’esquerra es veu la imatge del conjunt de les galàxies en col·lisió Arp 299 obtinguda pel telescopi espacial Hubble. Sophia Dagnello, NRAO / AUI / NSF; NASA, STScI

2.- Gif animat que mostra l’expansió de la regió emissora en ràdio del nucli d’Arp 299-B on l’estrella va ser destrossada per un forat negre supermassiu. L’expansió indica que el jet de partícules es mou cap a l’exterior. Mattila, Perez-Torres, et al .; Bill Saxton, NRAO / AUI / NSF

Veient de prop el naixement dels planetes

El mirar fotos de quan tenies hores o dies de vida sempre fa gràcia. Imagineu, doncs, la gràcia que em fa veure imatges de com va néixer el nostre Sistema Solar i el planeta que trepitgem. No el nostre exactament, sinó d’altres similars. Això és el que s’ha aconseguit amb l’instrument SPHERE, instal·lat en el telescopi Very Large Telescope (VLT) de l’Observatori Europeu del Sud a Xile. S’ha pogut veure, amb un detall sense precedent, els discos de gas i pols formats al voltant d’un grapat d’estels joves.

La formació estel·lar es dóna en els núvols moleculars gegants. Aquests núvols, freds i densos, contenen, bàsicament, hidrogen molecular H2. A causa d’alguna classe de pertorbació, com per exemple l’explosió d’una supernova pròxima, aquests núvols es tornen inestables gravitatoriament i poden fragmentar-se localment per col·lapsar per formar una nova estrella i, segurament un sistema de planetes a partir d’un disc de gas i pols.

Aquesta col·lecció de discos protoplanetaris observats amb l’instrument SPHERE prové de l’estudi sistemàtic d’un grapat d’estels, la majoria objectes T Tauri, un tipus d’estrelles molt joves, amb menys de 10 milions d’anys d’edat i variables en brillantor. I, resulta que aquests estels tan i tan joves, quasi bebès, encara conserven part de la nebulosa d’on es van formar. Aquest gas en forma de disc pla, conté gas, pols (grans de silicats) i petites roques de grandàries d’uns centenars de metres anomenades  planetesimals. Encara que sembla que aquests discos observats no tenen planetes formats, aquests ingredients seran les peces necessàries per a la formació en pocs milers d’anys de nous planetes i, per tant, nous sistemes planetaris que observaran els futurs astrònoms.

Aquestes imatges són extraordinàries, no només perquè estem veient en directe com s’estan creant nous estels i possiblement planetes sinó que són representacions dels nostres orígens en aquesta Terra que trepitgem. El Sistema Solar tenia una estructura similar en les primeres etapes de la seua formació fa uns 4600 milions d’anys. Els discos observats presenten una gran varietat de formes, grandàries i estructures, i, potser, fins i tot, efectes que poden ser planetes en formació.

L’objectiu principal de l’instrument SPHERE és detectar i caracteritzar, mitjançant imatges directes, exoplanetes gegants que orbiten estrelles pròximes. Aquest és un repte important ja que aquests planetes es troben molt a prop de les estrelles amfitriones i es caracteritzen per tenir una brillantor molt més baixa. En una imatge normal la llum procedent de l’estrella és tan intensa que emmascara completament la feble llum que prové d’un objecte com un disc de pols o un planeta.

Per això mateix, el disseny de SPHERE s’ha basat en la necessitat d’obtenir el major contrast possible en l’entorn immediat de l’estrella. Per fer visibles els discos de pols o els possibles exoplanetes, l’instrument SPHERE combina diverses tècniques avançades. La primera és utilitzar òptica adaptativa per corregir en temps real els efectes de la turbulència atmosfèrica; les imatges obtingudes són molt més nítides i el contrast millora. La segona tècnica es basa en l’ús d’un coronògraf que, amb un petit disc opac, bloqueja la llum procedent de l’estrella central: la relació de contrast augmenta encara més.

La majoria d’aquestes imatges s’obtingueren com a part del sondeig  DARTTS-S (Discs ARound T Tauri Stars with SPHERE). Les distàncies d’aquestes estrelles joves caçades en el procés de formar nous planetes oscil·len entre 230 i 550 anys llum de la Terra.

SPHERE està aconseguint uns resultants impressionants, no només en la caracterització d’estels joves sinó també en l’estudi d’objectes del Sistema Solar, com es pot observar en aquesta galeria d’imatges espectaculars.

Imatges:

1.- Image espectacular del disc de pols al voltant de l’estel jove IM Lupi obtinguda per l’instrument SPHERE instal·lat en el Very Large Telescope. Col·laboració ESO/H. Avenhaus et al./DARTT-S.
2.- Discos polsosos al voltant de diverses estrelles joves observats per l’instrument SPHERE instal·lat en el Very Large Telescope. Col·laboracions ESO/H. Avenhaus et al./E. Sissa et al./DARTT-S i SHINE
3.- Vídeo: Molt endins del capoll fred i turbulent d’un núvol molecular es troben nombroses estrelles en les primeres fases de formació. Un d’aquestes protoestrelles acull un disc polsegós on les nanes marrons o els planetes podran formar-se algun dia. NCSA / NASA / A. Kritsuk i M. Norman (UC San Diego) i A. Boley (Univ. De Florida)

A/2017 U1 (PANSTARRS), l’asteroide que vingué d’un altre sistema estel·lar

Fa uns dies els astrònoms es quedaren sorpresos en calcular l’òrbita de l’objecte descobert pel sistema de vigilància robòtica PanSTARRS a Hawaii. Els paràmetres orbitals de l’estrany objecte ens permeten afirmar que provenia sense cap dubte de més enllà del Sistema Solar. A/2017 U1 (PANSTARRS), com se l’ha anomenat, és el primer exemple d’un objecte interestel·lar. El seu origen cal buscar-lo en un altre sistema estel·lar.

Descobert el passat 19 d’octubre, aquest cos d’uns 400 metres de diàmetre viatja a una velocitat molt més gran que qualsevol objecte conegut del Sistema Solar. L’astrònom Rob Weryk (Institute for Astronomy de Hawaii) s’adonà ràpidament que era un cos ben especial  “El seu moviment no podria explicar-se ni com el d’un asteroide normal del Sistema Solar ni com l’òrbita d’un cometa”.

També era estrany que el cos entrara al Sistema Solar des de dalt de l’eclíptica, el pla on es troben i giren els planetes al voltant del Sol. Per tant, l’estrany objecte no va ser mai espentat per cap planeta gegant, com de vegades passa amb els cometes que s’aproximen massa a Júpiter.

Quan es descobrí el 19 d’octubre, A/2017 U1 (PANSTARRS) ja havia passat pel periheli, el punt de màxima aproximació al Sol, el 9 de septembre a una distància de només 37,5 milions de quilòmetres (0,25 ua) del Sol. En aquell moment ningú se n’adonà del petit cos i només es fixaren en ell quan s’aproximà a la Terra a una distància de 24 milions de quilòmetres (unes 60 vegades la distància a la Lluna).

L’animació mostra el camí de l’asteroide A/2017 U1 i com passà a través del sistema solar interior en setembre i octubre del 2017. NASA/JPL-Caltech.

A hores d’ara l’estrany cos ha tornat a creuar el pla de l’eclíptica i retorna a l’espai profund en direcció a la constel·lació de Pegàs, viatjant a  44 quilòmetres por segon respecte del Sol.

Però, el que ha sorprés de debò els astrònoms és el valor de l’excentricitat e de l’òrbita del asteroide, que amb un valor pròxim a 1.2 ens determina una òrbita hiperbòlica, de fet la més hiperbòlica mai detectada en un cometa. Una hipèrbola és una òrbita oberta i, per tant, juntament amb que ve des de dalt de l’eclíptica, ens permet afirmar que  A/2017 U1 (PANSTARRS) prové d’algun lloc de fora del nostre sistema solar.

En mecànica celeste, qualsevol òrbita ha de ser una figura en forma de secció cònica. L’excentricitat d’aquesta secció cònica, excentricitat de l’òrbita, és un paràmetre de l’òrbita que defineix la seua configuració de forma absoluta. L’excentricitat pot ser interpretada com la mesura de com la seua forma es desvia d’una circumferència.

D’aquesta manera l’excentricitat e és estrictament definida per a les òrbites circular, el·líptica, parabòlica i hiperbòlica i pot prendre els valors següents:

L’òrbita hiperbòlica (amb e major que 1) que segueix aquest objecte tan singular és una corba oberta i, a més, de màxima energia. És, per això que, sense cap dubte, A/2017 U1 (PANSTARRS) ha fet un viatge de milers de milions d’anys des d’un sistema estel·lar llunyà que l’expulsà en l’època de la seua formació.

Durant molt de temps hem sospitat que aquests objectes havien d’existir, perquè durant el procés de la formació dels planetes molt de material sobrant és expulsat dels sistemes planetaris. El  que és més sorprenent és que no hagem vist mai passar aquests objectes interestel·lars abans”, comenta Karen Meech del Institute for Astronomy de Hawaii.

Més informació:
A/2017 U1 PANSTARRS: el primer asteroide interestelar
Small object visits from beyond solar system
Imatges:

1.-Diagrama esquemàtic del nostre sistema solar en el que es mostra el camí seguit per A/2017 U1 (línia discontínua) a mesura que travessa el pla dels planetes (l’eclíptica), i la seua eixida del sistema solar. L’ampliació mostra el camí de l’objecte a través del sistema solar intern, amb el segment curt i sòlid que mostra la petita porció de dues setmanes de la ruta durant la qual es podrà observar amb grans telescopis. Per comparació, també es representa l’òrbita altament allargada d’un cometa que forma part del nostre sistema solar. Brooks Bays / SOEST Publication Services / UH Institute for Astronomy.
2.- Exemples d’una òrbita el·líptica (eccentricitat = 0.7), d’una òrbita parabòlica (eccentricitat = 1)  i una òrbita hiperbòlica (eccentricitat = 1.3). Wikipedia Commons.

Primera detecció d’ones gravitatòries de la col·lisió de dos estels de neutrons… i l’origen de l’or a la Terra

Per primera vegada, els científics han detectat de forma directa i simultània ones gravitatòries – ondulacions en l’espai-temps – i la llum provinent d’una col·lisió espectacular de dues estrelles de neutrons. Això constitueix la primera vegada que d’un esdeveniment còsmic observat en ones gravitatòries, s’ha descobert al mateix temps la seua contrapartida òptica i la radiació d’alta freqüència emesa. D’aquesta manera, finalment, hem pogut “veure” exactament d’on provenen els senyals observats. A més s’ha pogut explicar l’origen dels metalls pesats com l’or.

El descobriment ha estat realitzat utilitzant l’Observatori d’Ones Gravitatòries per Interferometria Làser (LIGO, per les sigles en anglès) situat als EUA, el detector Virgo situat a Europa, i uns 70 observatoris terrestres, 7 d’ells espacials. La coordinació mundial de milers de científics durant setmanes per monitoritzar el mateix fenomen ha permès aquest resultat espectacular.

Dos anells de casament. Origen: col·lisió de dos estels de neutrons. Wikipedia

El 17 d’agost de 2017, astrònoms de tot el món van ser avisats d’una observació d’ones gravitatòries registrada pels detectors LIGO avançat i per Virgo avançat. Aquest esdeveniment d’ones gravitatòries, conegut ara com GW170817, semblava ser el resultat de la fusió de dues estrelles de neutrons. La idea era captar en els primers moments els senyals emesos per la font astrofísica utilitzant telescopis capaços de recollir llums de longituds d’ona diferent, des d’ones de ràdio fins a raig gamma, passant per les ones de llum visibles.

Ondulacions de la gravetat, esclats de llum (4:17)

El 17 d’agost de 2017, LIGO) i Virgo van detectar, per primera vegada, ones gravitatòries a partir de la col·lisió de dues estrelles de neutrons. L’esdeveniment no només va ser “escoltat” en ones gravitatòries, sinó que també es va veure la llum captada per dotzenes de telescopis a terra i a l’espai. (Crèdit: LIGO-Virgo)

Menys de dos segons després del senyal GW170817, el satèl·lit Fermi de la NASA va observar un esclat de raigs gamma, conegut ara com GRB170817A, i en els minuts següents a aquestes deteccions inicials, desenes de telescopis al voltant del món van començar una extensa campanya d’observació.

El telescopi Swope a Xile va ser el primer a informar sobre una font òptica brillant (SSS17a) en la galàxia NGC 4993 i altres grups addicionals van detectar de forma independent el mateix senyal transitori durant els següents minuts i hores. Durant les setmanes següents, els astrònoms van observar aquesta galàxia amb instruments sensibles en tot l’espectre electromagnètic. El conjunt d’aquestes observacions proporcionen ara una visió exhaustiva d’aquest esdeveniment cataclísmic començant aproximadament 100 segons abans de la fusió dels estels de neutrons fins a diverses setmanes després. Les observacions avalen la hipòtesi que dos estels de neutrons es van fusionar en la galàxia NGC 4993, situada a 130 milions d’anys llum de distancia – produint ones gravitatòries, un esclat de raigs gamma de curta durada i una kilonova. L’esdeveniment GW170817 marca una nova era en l’astronomia de multi-missatgers, on el mateix esdeveniment és observat amb ones gravitatòries i electromagnètiques.

Els estels de neutrons són els estels més petits i densos coneguts. D’una massa d’una estrella mitjana, el seu diàmetre és d’uns 20 km. Per això són tan densos que una sola cullereta de café de la seua matèria pesa mil milions de tones.

Es formen quan estrelles més massives exploten en forma de supernoves. Quan dues estrelles de neutrons orbiten una al voltant de l’altra, el sistema perd energia en forma d’ones gravitatòries i, per tant les dues estrelles orbiten de forma espiral estant condemnades a unir-se de forma catastròfica després de mil·lennis. En el cas observat, a mesura que l’òrbita de les dues estrelles de neutrons girava en forma d’espiral, el sistema binari emetia ones gravitatòries que van ser detectades durant uns 100 segons abans del col·lapse. Al xocar, amb una velocitat prop de la tercera part de la velocitat de la llum, es va emetre un gran esclat de llum en forma de raigs gamma observat a la Terra uns dos segons després de la detecció de les pròpies ones gravitatòries.

En els dies i setmanes posteriors a la col·lisió, altres formes de llum o radiacions electromagnètiques – incloent raigs X, ultraviolada, òptica, infraroja i ones de ràdio – van ser també detectades. Les observacions han donat als astrònoms una oportunitat sense precedents per a investigar la col·lisió de dues estrelles de neutrons. Per exemple, les observacions realitzades per l’observatori Gemini d’Estats Units, l’European Very Large Telescope i el Hubble Space Telescope revelen traces de materials recentment sintetitzats, incloent or i platí, desxifrant el misteri no resolt durant dècades sobre on es produeixen aproximadament la meitat de tots els elements químics més pesats que el ferro.

A la Universitat de les Illes Balears hi ha un grup que col·labora amb Ligo (LIGO@UIB) des de fa temps mentre que a la Universitat de València el  Valencia Virgo Group participa en la Col·laboració Virgo des de l’1 de juliol del 2016. Enhorabona als dos grups.

Més informació:
Imatges:

1.-Col·lisió cataclísmica. Il·lustració artística de dues estrelles de neutrons xocant. La quadrícula de l’espai-temps ondulant representa les ones gravitatòries que surten de la col·lisió, mentre que les bandes estretes mostren les ràfegues de raigs gamma disparats pocs segons després de les ones gravitatòries. També es representen els remolins de material expulsat de les estrelles que xoquen. Els núvols de gas brillen amb longituds d’ona visibles i d’altres tipus de llum més energètica. NSF/LIGO/Sonoma State University / A. Simonnet.

2.-Primers fotons òptics de la font d’ones gravitatòries. Imatges òptiques i infraroges del telescopi Swope i Magellan de la primera contrapart òptica d’una font d’ones gravitatòries, SSS17a, a la seua galàxia, NGC 4993. La imatge esquerra és del 17 d’agost de 2017, 11 hores després de la detecció de LIGO-Virgo, i conté els primers fotons òptics detectats de la font. La imatge a la dreta és de quatre dies més tard, quan SSS17a, les conseqüències d’una fusió d’estrelles de neutrons, es va esvair significativament i el seu color es va tornar molt més vermell.1M2H / UC Santa Cruz i Carnegie Observatories / Ryan Foley.

3.- Representació artística d’un estel de neutrons sobre la badia de San Francisco. Observeu que petita és. Més informació. NASA.

4.-GW170817: esdeveniment global d’astronomia. Un mapa dels aproximadament 70 observatoris òptics que detectaren l’esdeveniment GW170817. El 17 d’agost de 2017, els detectors LIGO i Virgo van observar ones gravitatòries causat per dues estrelles de neutrons en col·lisió. Els telescopis òptics a tot el món van observar les seqüeles de la col·lisió en les hores, dies i setmanes següents. Van ajudar a identificar la ubicació de les estrelles de neutrons i van identificar signes d’elements pesats, com l’or, en el material expulsat de la col·lisió. LIGO-Virgo

Vera Rubin, la dona que veié allò invisible

110115-media-rubin

Aquests dies de Nadal ens ha deixat una gran astrònoma, Vera Cooper Rubin. Poc coneguda fora de l’àmbit de les ciències del cel, aquesta científica de 88 anys va fer un dels descobriments més importants del segle XX: la demostració clara de l’existència de la matèria fosca. Encara que s’ha especulat els darrers anys perquè es creia que podia guanyar el premi Nobel de Física, la seua mort ara ho fa impossible. Per cert, ja fa 53 anys que no se li atorga a cap dona.

Vera nasqué el 1928 a Filadèlfia (EEUU), però als 10 anys es desplaçà a viure a Washington DC. Allí s’apassionà per l’astronomia i hi passà hores mirant pel seu telescopi ben esperonada pel seu pare, un enginyer elèctric d’origen lituà.

Era ben estrany que una dona pretenguera fer una carrera de ciències en els anys quaranta, però ella ho aconseguí en graduar-se l’any 1948 en Vassar College, una universitat per a dones a l’estat de Nova York, en la qual l’astrònoma Maria Mitchell fou la primera professora. Com li passà a Maria Mitchell 100 anys abans, Vera també va tindre grans dificultats per continuar els estudis científics. Precisament l’exemple de l’astrònoma Mitchell l’encoratjà a lluitar per aconseguir-ho.

La idea inicial de Vera va ser continuar la formació amb el màster d’astronomia de la Universitat de Princeton, però no fou acceptada perquè fins al 1975 no permeté dones en el programa d’estudis graduats d’Astronomia.

Vassar-Homepage-20110714.jpg

Vera, però, no es desanimà i es matriculà en un màster de Física en la Universitat Cornell, també de l’estat de Nova York, amb grans professors com Philip Morrison, Richard Feynman i Hans Bethe. El 1954 es doctorà a la Universitat de Georgetown, de Washington DC, sota la direcció de George Gamow, l’astrònom que va predir un origen explosiu per a l’Univers, el que coneixem com a Big Bang.

Amb la tesi esbrinà la forma en què es distribuïen les galàxies en l’Univers. Estaven repartides a l’atzar, de manera homogènia o seguien algun patró determinat? La ferramenta estadística que desenvolupà per a analitzar els centenars de milers de galàxies registrades fins aleshores la portaren a conjecturar que les galàxies tendeixen a concentrar-se en certes zones amb enormes buits entre elles. Aquesta forma d’organitzar-se la matèria no fou acceptada en el seu moment, però s’ha vist totalment confirmada posteriorment i, de fet, és la base actual de l’estructura a gran escala de l’Univers.

Tanmateix la recerca que la féu famosa s’esdevingué quan es traslladà a la Carnegie Institution for Science de Washington DC, on començà a col·laborar amb W. Kent Ford, Jr. (1931). L’interés de tots dos era esbrinar com giren les estrelles al voltant de les galàxies espirals. Ford Jr. havia desenvolupat un espectrògraf molt sensible que permetia mesurar la velocitat de les estrelles en funció de la seua distància al centre de les galàxies.

keplerian_orbit_lblEn el Sistema Solar la majoria de la massa es concentra en el Sol. Per tant, els planetes giren cada vegada més lentament al seu voltant a mesura que s’hi troben més lluny. Mercuri gira més ràpid que Mart i aquest més que Neptú. Si els planetes llunyans giraren més ràpid s’escaparien. Aquest tipus de gir reflecteix la distribució de matèria en el Sistema Solar, en què gran part de la massa es troba al centre i ben poca a l’exterior. Aquest gir rep el nom de rotació kepleriana.

La pregunta que es feien Rubin i Ford Jr. era si en les galàxies espirals la gràfica de les velocitats orbitals de les estrelles també tindria el mateix aspecte, és a dir, si tindria un perfil keplerià. De fet, en les galàxies espirals passa com en el Sistema Solar: en el centre de la galàxia (el bulb) es troba concentrada gran part de la massa galàctica i aquesta massa va disminuint a mesura que ens allunyem del centre. Era d’esperar, doncs, una corba similar.

Andromeda_Galaxy_(with_h-alpha)Per començar l’estudi s’elegí la Gran Galàxia d’Andròmeda, per ser la més pròxima i, per tant, la més fàcil per poder aïllar els objectes individuals. I en lloc d’usar estrelles com a marcadors de la corba s’utilitzaren nebuloses de gas d’hidrogen ionitzat (HII) i associacions estel·lars OB. La feina era feixuga, ja que es van fer els espectres de 67 nebuloses de gas a distinta distància del centre galàctic. Després va caldre, a partir d’ells, determinar les velocitats orbitals.

Rubin-Ford-ApJ1970Els resultats obtinguts i publicats l’any 1970 en l’article Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions van ser tota una revolució. La corba de les velocitats orbitals de les nebuloses d’emissió HII d’Andròmeda no era en absolut de forma kepleriana, sinó que era molt més complicada. Era veritat que prop del nucli galàctic les velocitats disminuïen ràpidament, però a partir de certa distància les velocitats de les nebuloses augmentaven i la corba tendia a ser més aviat plana. Aquest estrany comportament es pensà al principi que era una peculiaritat d’Andròmeda però, ben aviat, les mesures de velocitat en altres galàxies demostraren que era una característica de totes les galàxies espirals.

¿Què pot fer que les velocitats d’estrelles i nebuloses siguen cada vegada més grans a mesura que ens allunyem del centre d’una galàxia? Vera Rubin postula que l’única possibilitat és que existisca una matèria que no brille però que tinga massa i, per tant, interactue gravitatòriament amb la massa visible exterior fent que aquesta gire més ràpidament.

M33_rotation_curve_HI

Encara que uns altres astrònoms ja havien especulat amb la massa invisible o perduda de les galàxies, va ser Vera Rubin qui va descobrir, sense cap mena de dubte, que la matèria visible no és l’única matèria de l’Univers. Existeix un altre tipus de matèria no visible que estructura i modula els moviments del gas i de les estrelles en les galàxies i el moviment de les galàxies en els cúmuls de galàxies. Encara no sabem de què està feta aquesta misteriosa matèria però d’alguna forma Vera Rubin va eixamplar l’Univers. Mereixia el premi Nobel de Física i ha estat una injustícia que no li’l donaren.

Nombrosos mitjans de comunicació i científics d’arreu del món lamenten la mort de Vera Rubin i la vergonya que no se la considera per al Nobel de Física. Només dues dones l’han guanyat. Un article del Washington Post pregunta: It’s been 53 years since a woman won the Nobel Prize in physics. What’s the holdup? (Han passat 53 anys des que una dona guanyà el premi Nobel de Física. Quina és la causa del retard?)

L’existència de la matèria fosca ha revolucionat completament el nostre concepte de l’univers i tot el nostre camp; els esforços en curs per entendre el paper de la matèria fosca han generat subcamps sencers dins de la física de partícules i de l’astrofísica en aquest moment“, comenta Emily Levesque, una astrònoma de la Universitat de Washington a Seattle, a Astronomy.com. “La voluntat d’Alfred Nobel descriu el premi de Física com el reconeixement del “descobriment més important en el camp de la física“. Si la matèria fosca no s’ajusta a aquesta descripció, no sé que ho farà.”

Més informació:

Figures:
1.- Vera Rubin
2.- Vera Rubin com a estudiant al Vassar College. Vassar College.
3.- Rotació kepleriana de les velocitats orbitals dels planetes del Sistema Solar. . The Rotation Curve of the Milky Way. PennState University.
4.- Galàxia d’Andròmeda. Wikimedia Commons.
5.- Velocitats de rotació de les asociacions OB en M31. Article Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Rubin i Ford Jr. 1970.
6.- Corba de rotació de la galàxia espiral M33 (punts grocs i blaus amb barres d’error) i la corba kepleriana predita a partir de la distribució de la matèria visible (línia blanca). La discrepància entre les dues corbes s’explica per l’addició d’un halo de matèria fosca que envolta la galàxia. Wikipedia Commons.

Arquitectura còsmica, l’univers al laboratori

arquitectura

Tant a la Terra com a l’espai, avui en dia, disposem dels telescopis més avançats. Les nostres observacions són més detallades i el nostre coneixement més precís. Però, malgrat els avanços, l’astronomia té un problema. No és una ciència experimental com ho puga ser la química. El procés de validació dels models proposats per a explicar una observació no pot ser reproduït als laboratoris.

Tanmateix, aquesta mancança s’ha anat esmenant darrerament. No podem reproduir un forat negre al laboratori, ni fer explotar un estel com a supernova, per raons de les escales implicades, en conseqüència, tractem de fer-ho virtualment. Si som capaços de fer mons virtuals en les consoles, per què no reproduir l’evolució de l’univers en conjunt?

Per això cal una simulació del fenomen astrofísic que ens interessa. Mitjançant l’ús de sofisticats programes o codis numèrics, es construeix una xarxa tridimensional en la que cada punt té associats els valors de temperatura, pressió, velocitat… i es fa evolucionar en el temps.
La simulació aconseguida serà bona si reprodueix les observacions i, encara més, si prediu fenòmens no observats. Les simulacions astrofísiques, per tant, esdevenen d’aquesta manera, un laboratori virtual on testejar els resultats obtinguts amb els telescopis.

Aquestes simulacions necessiten utilitzar superordinadors amb milers de processadors. Un càlcul típic pot utilitzar la capacitat de milers d’ordinadors domèstics i durar dies o setmanes.

La Universitat de València compta amb un potent grup d’Astrofísica i Cosmologia computacional al departament d’Astronomia i Astrofísica. A la Fundació Valenciana d’Estudis Avançats (Pintor López, 7, València), alguns dels seus membres explicaran les seues troballes, tots els dijous fins a Falles, en un cicle de conferències coordinat pel catedràtic José Maria Ibáñez. El pròxim 10 de febrer, el professor Vicent Quilis parlarà de la formació i evolució de l’Univers i de les tècniques usades per a realitzar les complexes simulacions cosmològiques així com també dels resultats obtinguts.

Imatge: Procés de transformació d’una galàxia. Vicent Quilis.

El cel de novembre 2008

NGC 253

Molt prop de l’horitzó sud podem veure aquest mes la constel·lació d’Sculptor, l’Escultor. Pertany al grup de constel·lacions que l’astrònom francés Lacaille va crear el segle XVIII durant la seua estada a Àfrica del Sud.L’objecte més destacat de la constel·lació és la galàxia de l’Escultor (NGC 253) que és una espiral barrada situada a 12 milions d’anys llum i que podem veure de perfil.

Al llarg de novembre Venus i Júpiter es veuran ben bé cap a l’oest poc després de la posta de Sol. Durant aquest mes s’aniran acostant fins que el dia 30 estaran ben a prop. La Lluna també participarà en aquest encontre i taparà el planeta Venus completament el dia 1 de desembre.I com a notícia planetària destacada podria anomenar el descobriment, fet per la sonda europea Mars Express, que Fobos, una de les dues llunes de Mart, no és més que una acumulació de residus.

Segueix …

Molt prop de l’horitzó sud podem veure aquest mes la constel·lació d’Sculptor, l’Escultor. Va ser una de les 14 constel·lacions de l’hemisferi sud que introduí l’astrònom Nicolas-Louis de Lacaille des del seu observatori del Cap de Bona Esperança. A partir de l’estudi del cel austral (entre 1750 i 1754) escrigué més tard l’obra Coelum Australe Stelliferum. Primerament l’anomenà Estudi de l’Escultor però aquest nom no prosperà i després s’acurtà només a Escultor.

La constel·lació d’Sculptor no té estrelles brillants. Alfa Sculptoris, la principal, té magnitud 4,3. És a una zona del cel on podem trobar el pol sud de la nostra galàxia i, com que aquesta té forma de disc pla, en aquesta direcció no hi ha gas i pols galàctics que s’interposen en la nostra visió de l’univers. És per això que podem veure multitud de galàxies tènues i llunyanes. La més destacada és la galàxia de l’Escultor (NGC 253) que és una espiral barrada situada a 12 milions d’anys llum i que podem veure de perfil.

A la posta del Sol, mirant cap a l’oest, el planeta Venus es veurà ben bé durant tot el mes. Una mica més alt veurem el planeta Júpiter. Al llarg de novembre Venus i Júpiter s’aniran acostant fins que el dia 30 estaran ben a prop. La Lluna també participarà en aquest encontre i taparà el planeta Venus completament el dia 1 de desembre. Aquest fet, tan poc habitual, s’esdevindrà a les 16:50 hores. Serà per tant a ple dia i difícil de veure. L’eixida del planeta ocorrerà unes hores més tard, a les 18:17 hores, poc després de la posta del Sol.

La primera setmana del mes, poc abans de l’eixida del Sol i en direcció a l’est, podrem veure el planeta Mercuri molt a prop de l’horitzó. Després es deixarà de veure ja que s’aproximarà més a la nostra estrella.

A la matinada, mirant cap a l’est, podrem admirar el planeta dels anells, Saturn, que els pròxims mesos serà el més destacat del cel.

El 6 de novembre la Lluna presentarà l’aspecte de quart creixent. Tindrem lluna plena el dia 13, i quart minvant el 19. El dia 27 el nostre satèl·lit ens mostrarà l’aspecte de lluna nova.

Mart continua sent notícia en aquesta secció. La sonda europea Mars Express ha pogut determinar acuradament la massa del satèl·lit marcià Fobos aproximant-se diverses vegades i mesurant la desviació gravitatòria causada per ell. Ha resultat ser molt poc massiu i poc dens. Sembla que Fobos no és un cos únic i sòlid sinó un aglomerat de residus còsmics de roques. Es creu que, fins i tot, pot estar ple de coves gegantines.

La imatge adjunta i en colors invertits representa un mapa del cel nocturn del dia 1 de novembre de 2008, a les 23:30 hores (hora oficial), que pot ser utilitzat per a l’observació. Només cal sostindre’l dalt del cap amb la part inferior en direcció al Sud (S). Així tindreu el Nord (N) a la vostra esquena en la carta, l’Est (E) es trobarà a l’esquerra i l’Oest (O) a la dreta. Aleshores veureu com les estrelles del mapa es corresponen amb les del cel. Aquest planisferi també pot servir-vos durant tot el mes. Solament caldrà restar 4 minuts per dia de l’hora d’observació indicada. Així aquesta carta serà correcta igualment per al dia 15 a les 22:30 hores i per al dia 30 a les 21:30 hores.

Figura adjunta: Mapa celeste per al mes de novembre 2008. Vàlid per al dia 1 de novembre a les 23:30 hores. Per a utilitzar-lo altres dies caldrà restar 4 minuts per dia de l’hora d’observació indicada. Gràfic del programa Cartes du Ciel.

Foto: Galaxia NGC 253 en infraroig. 2MASS Image Atlas. Imatge obtinguda com a part del Two Micron All Sky Survey (2MASS), un projecte conjunt de la University of Massachusetts i the Infrared Processing and Analysis Center/California Institute of Technology, finançat per the National Aeronautics and Space Administration (NASA) i the National Science Foundation (NSF).