Pols d'estels

El bloc d'Enric Marco

Arxiu de la categoria: Estel de neutrons

Mirant de prop una estrella del Gran Núvol de Magalhães

0
Imatge de l’estrella WOH G64. L’oval brillant en el centre d’aquesta imatge és un capoll polsós que embolica a l’estrella. Un anell el·líptic més feble al seu voltant podria ser la vora interior d’un toroide polsós. ESO/K. Ohnaka et al.

Les estrelles del cel nocturn són objectes com el nostre Sol situats a desenes o milers d’anys-llum de distància. Per tant, el seu aspecte real, els detalls de la seua superfície o de l’entorn més pròxim són difícil d’obtenir. Només unes dues dotzenes d’imatges ampliades d’estrelles en la nostra galàxia han revelant les seues propietats. Una d’elles és Betelgeuse, l’estel gegant roig de la constel·lació d’Orió que a principis del 2020 semblava que anava a explotar com a supernova.  Però hi ha moltes altres estrelles que habiten a altres galàxies, tan llunyanes que observar-les detalladament suposa un desafiament extrem. Fins ara.

Un equip de la Universidad Andrés Bello a Xile ha estat seguint durant els darrers 10 anys l’estrella WOH G64, que es troba al  Gran Núvol de Magalhães situat a uns 160 000 anys-llum de nosaltres. Aquest Gran Núvol és una de les petites galàxies que orbiten la nostra galàxia de la Via Làctia. Ara aquests astrònoms n’han aconseguit una imatge detallada gràcies a la impressionant nitidesa oferida per l’Interferòmetre del Very Large Telescope Interferometer (VLTI d’ESO) situat al Cerro Paranal, Xile. Les noves observacions revelen una estrella expulsant gas i pols en les últimes etapes de la seua vida abans de convertir-se en una supernova.

La comunitat astronòmica coneix molt bé aquesta estrella des de fa dècades. L’han anomenada com a l’estrella gegant ja que és unes 2000 vegades més gran que el Sol i, no debades, està classificada com a supergegant roja. La seua lluminositat és equivalent a la de 282 000 sols, la seua massa inicial s’estima en 25 masses solars, valor d’acord amb els models d’evolució estel·lar, mentre que la seua temperatura efectiva és d’uns 3400 K. Havent perdut entre el 10 i el 40% de la seua massa, s’encamina, sense remei, cap al seu final com a supernova.

Imatge de l’estrella WOH G64 al costat d’una reproducció artística. ESO/K. Ohnaka et al., L. Calçada

Per primera vegada, hem aconseguit obtenir una imatge ampliada d’una estrella moribunda en una galàxia fora de la nostra Via Làctia“, afirma Keiichi Ohnaka, investigador principal de l’estudi. “Descobrim un embolcall en forma d’ou que envolta molt de prop a l’estrella. Estem emocionats perquè això pot estar relacionat amb la dràstica ejecció de material de l’estrella moribunda abans d’una explosió de supernova“.

Per a obtenir la imatge desitjada, l’equip va haver d’esperar al desenvolupament d’un dels instruments de segona generació del VLT, GRAVITY. Després de comparar els seus nous resultats amb altres observacions anteriors de WOH G64, es van sorprendre en descobrir que l’estrella s’havia tornat més tènue durant l’última dècada.”Hem descobert que l’estrella ha experimentat un canvi significatiu en els últims 10 anys, la qual cosa ens brinda una oportunitat única de presenciar l’evolució d’una estrella en temps real“, afirma Gerd Weigelt, professor d’astronomia en l’Institut Max Planck de Radioastronomia a Bonn (Alemanya) i coautor de l’estudi.

El Gran Núvol de Magallanes és una galàxia satèl·lit de la Via Làctia, situada a 160 000 anys llum de nosaltres. Aquesta imatge mostra la ubicació de l’estrella dins del Gran Núvol de Magallanes, amb alguns dels Telescopis Auxiliars del VLTI en primer pla. ESO/K. Ohnaka et al./I. Beletsky (LCO)

En les seues etapes finals de vida, les supergegants roges com WOH G64 es desprenen de les seues capes externes de gas i pols en un procés que pot durar milers d’anys. “Aquesta estrella és una de les més extremes del seu tipus, i qualsevol canvi dràstic pot acostar-la a un final explosiu“, afig el coautor Jacco van Loon, director de l’Observatori Keele de la Universitat de Keele (el Regne Unit) que ha estat observant WOH G64 des de la dècada de 1990.

L’equip creu que aquests materials llançats per l’estrella també poden ser responsables de l’enfosquiment i de la forma inesperada de l’embolcall de pols que envolta a l’estrela. La nova imatge mostra que l’embolcall està estirat, la qual cosa va sorprendre la comunitat científica, que esperava una forma diferent basada en observacions anteriors i models informàtics. L’equip creu que la forma d’ou de l’embolcall podria explicar-se per la pèrdua de material de l’estrella o per la influència d’una estrella companya encara no descoberta.

A mesura que l’estrella es torna més feble, l’obtenció de més imatges es torna cada vegada més difícil, fins i tot per al VLTI. No obstant això, les actualitzacions planificades per a la instrumentació del telescopi, com el futur GRAVITY+, prometen canviar això en poc temps. “Per a comprendre el que està succeint en l’estrella, seran fonamentals les observacions de seguiment similars que es duguen a terme amb instruments d’ESO“, conclou Ohnaka.

I, d’ací a pocs o molts anys, potser 10 000 anys, una llum potent brillarà tant com tot el Gran Núvol de Magalhães. L’estrella haurà explotat i només en quedarà un residu en forma d’estrella de neutrons, un tipus d’estrella degenerada, composta bàsicament per neutrons a densitats altíssimes: acostumen a tenir uns 20-30 km de diàmetre i una massa igual a la d’una estrella mitjana.

A partir de la nota de premsa de l’European Southern Observatory
Un equipo de astrónomos toma la primera imagen en primer plano de una estrella fuera de nuestra galaxia. 21 de novembre de 2024.

Isabel Cordero a la Setmana de la Ciència de Gandia 2020

0

Isabel Cordero, professora titular de la Facultat de Matemàtiques, àrea de Matemàtica Aplicada, de la Universitat de València, ha estat la cinquena conferenciant de la Setmana de la Ciència de Gandia 2020, organitzada per CEIC Alfons el Vell, la Universitat de València i la Universitat Politècnica de València, Campus de Gandia.

Amb la seua xarrada es tanca la IV Setmana de la Ciència de Gandia. Una setmana de difusió de la ciència cap a la societat que en aquest temps de pandèmia s’ha fet alhora presencial i virtual.

Isabel Cordero és llicenciada en Matemàtiques i Doctora en Astrofísica per la Universitat de València. Ha estat investigadora postdoctoral en l’Institut Max-Planck d’Astrofísica en Garching (Munich, Alemanya) i en l’Observatori de Paris-Meudon. També ha realitzat estades d’investigació en les universitats de Lieja i Namur en Bèlgica.

Compagina la tasca docent amb una activitat investigadora en el camp de la matemàtica aplicada i de l’astrofísica, amb especial interés en la relativitat numèrica i les ones gravitatòries.

És membre de la col·laboració internacional Virgo a València, on coordina les activitats de divulgació i comunicació. És membre de l’Editorial Board de la revista Journal of Physics Communications i de la Junta Directiva de la Sociedad Española de Relatividad y Gravitación. També té una participació activa en projectes amb estudiants universitaris de diferents graus, i dedica gran part del seu temps i de la seua il·lusió a moltes activitats de divulgació científica entre elles ser un membre actiu de l’Associació Sapiencia, a Port de Sagunt (el Camp de Morvedre).

En la seua conferència “Observatorios de ondas gravitatorias: tecnología punta para una ciencia fascinante“, després d’una senzilla introducció a la Relativitat General d’Einstein, ens ha explicat el que són les ones gravitatòries, pertorbacions de l’espai temps causades per gegantins xocs d’estels de neutrons o de forats negres, i que es propaguen per tot l’univers. El seu estudi és proporcionaria, per tant, moltíssima informació sobre aquests monstres celestes. La intensitat d’aquestes ones, però, és tan petita que en arribar a la Terra és pràcticament impossible mesurar-les.

Tanmateix al segle XXI l’interés per obtenir resultats ha impulsat la recerca en tecnologia de làsers, buit, estabilitat estructural, etc i des fa uns anys disposem d’uns revolucionaris observatoris que ens permeten captar aquestes subtils ones gravitatòries quan arriben a la terra. Des de la primera detecció d’una ona gravitatòria que travessà la Terra el 14 de setembre de 2015, resultat del xoc de dos forats negres de 29 i 26 masses solars respectivament, desenes d’esdeveniments s’han detectats als observatoris LIGO i Virgo, resultat que ha estat premiat pel Premi Nobel de Física del 2017 per els seus promotors.

La ciència que s’està fet és realment fascinant. De tot i això i més ens parlà Isabel Cordero i tot ho podeu veure en diferit al Canal YouTube del CEIC Alfons el Vell.

https://youtu.be/DyIm2RWWfJM

Un objecte misteriós es fusiona amb un forat negre

3
Publicat el 29 de juny de 2020

Fa uns dies els científics que controlen els detectors d’ones gravitatòries Virgo i LIGO anunciaren el descobriment d’un objecte compacte d’unes 2,6 masses solars, estant, per tant, en un interval entre l’estrella de neutrons més massiva i el forat negre més lleuger mai vist. En el fenomen observat ara, i que va ocórrer fa uns 800 milions d’anys,  aquest objecte misteriós es va fusionar amb un forat negre de 23 masses solars i, en fer-ho, va emetre una intensa ona gravitatòria. Atès que l’observació aïllada d’aquesta ona, que es va detectar a la Terra l’agost de 2019, no ens permet distingir si l’objecte compacte és un forat negre o una estrella de neutrons, la seua natura exacta continua sent un misteri.

Durant molt de temps, la comunitat astronòmica ha estat desconcertada per la manca d’observacions d’objectes compactes amb masses en l’interval des de 2,5 fins a 5 masses solars. Aquesta misteriosa zona grisa es coneix com el “buit en la distribució de masses“: un interval de masses aparentment massa petites per a un forat negre i massa grans per a una estrella de neutrons. Tant les estrelles de neutrons com els forats negres es formen quan estrelles molt massives esgoten el seu combustible nuclear i exploten com a supernoves. El que queda després de l’explosió depèn de la quantitat que roman del nucli de l’estrella. Els nuclis menys massius tendeixen a formar estrelles de neutrons, mentre que els més massius col·lapsen en forats negres. Entendre si hi ha un buit en la distribució de masses en l’interval esmentat, i per què, ha estat un enigma durant molt de temps per als científics.

El problema rau en el fet que un estel de neutrons té un interval de masses possibles a causa de diverses condicions físiques. Per això, un estel de neutrons té una massa de com a mínim 1,1 masses solars (M) mentre que el límit superior de la massa d’un estel de neutrons ve donat teòricament pel limit Tolman–Oppenheimer–Volkoff i és generalment d’uns 2,1 M. Tanmateix estudis recent posen el límit una mica més alt, fins a 2.16 M. De fet, la màxima massa observada és d’uns 2,14 M per a l’objecte PSR J0740+6620 descobert en setembre del 2019. Ara, si l’objecte misteriós és realment un estel de neutrons, caldrà repensar aquestes previsions o bé cercar un altre candidat totalment desconegut.

Representació en un gràfic de temps front a freqüència de les dades de l’esdeveniment GW190814, observat per LIGO Hanford (panell superior), LIGO Livingston (panell central) i Virgo (panell inferior). El temps conta des de 10 segons abans de la fusió dels dos objectes. La energía en una quadrícula determinada en temps-freqúència està representada per la paleta de colors. En el panel central el senyal fou més intens.

Les col·laboracions científiques que operen el detector Advanced Virgo a l’Observatori Gravitatori Europeu (EGO, per les sigles en anglès), prop de Pisa a Itàlia, i els dos Advanced LIGO, als Estats Units, han anunciat la descoberta d’aquest objecte d’unes 2,6 masses solars, és a dir, situat dins de l’anomenat “buit en la distribució de masses “, qüestionant així que aquest buit d’objectes realment existira. La natura de l’objecte continua sent un misteri, ja que aquesta observació d’ones gravitatòries per si sola no permet distingir si es tracta d’un forat negre o d’una estrella de neutrons. Fa uns 800 milions d’anys, l’objecte estrany es va fusionar amb un forat negre de 23 masses solars i, en fer-ho, va generar un forat negre final d’unes 25 vegades la massa del Sol. La fusió va emetre una intensa ona gravitatòria (la diferència de les masses abans i després de la fusió, d’unes 0,6 masses solars, convertides en energia) que els tres instruments de la xarxa van detectar el 14 d’agost de 2019, i, per tant, s’ha etiquetat com a GW190814. El descobriment s’acaba de publicar en la revista The Astrophysical Journal Letters.

Una peculiaritat d’aquest esdeveniment és que la fusió mostra la proporció més inusual entre masses d’un sistema de dos estels registrat fins a la data. La massa més gran és aproximadament 9 vegades més massiva que la massa menor.

L’anàlisi de la majoria de senyals anunciats per LIGO i Virgo fins a la data ha transcorregut sense grans sobresalts ja que les masses involucrades han facilitat la identificació precisa del tipus d’objectes“, comenta José Antonio Font, coordinador del grup Virgo a València. “Afortunadament, amb GW190814, com també va passar en part amb GW190425, entrem en un terreny on les conclusions ja no són tan senzilles. Aquest és un senyal apassionant que qüestiona les nostres idees sobre la formació dels objectes compactes. Benvingut siga!

Masses dels estels de neutrons i forats negres mesurats mitjançant ones gravitatòries i observacions telescòpiques. Les marques grogues i púrpura representen les mesures electromagnètiques (amb telescopis) d’estels de neutrons i forats negres, respectivament, mentre que les marques taronja i blava són les corresponents mesures usant ones gravitatòries. El senyal GW190814 destaca al mig de la figura com una fusió d’un forat negre i un objecte misteriós amb una massa d’unes 2,6 vegades la massa del Sol, un esdeveniment que va produir un altre forat negre. LIGO-Virgo. Frank Elavsky,  Aaron Geller,  Northwestern.

El senyal associat a una fusió tan inusual va ser clarament detectat pels tres instruments de la xarxa LIGO-Virgo, amb una relació global senyal-soroll de 25. Gràcies principalment al retard entre els temps d’arribada del senyal en els detectors, és dir, els dos Advanced LIGO als EUA i l’Advanced Virgo a Itàlia, la xarxa de 3 detectors va ser capaç de localitzar l’origen de la font que va generar l’ona en uns 19 graus quadrats.

La identificació de nous tipus de senyals com GW190814 es basa en la millora contínua dels models teòrics de formes d’ona “, afegeix l’investigador Sascha Husa, de la Universitat dels Illes Balears (UIB). “El grup UIB ha contribuït al desenvolupament d’alguns dels models utilitzats per a aquest esdeveniment, per als quals l’ús de la supercomputadora més gran d’Espanya, Mare Nostrum, ha estat essencial.”

Regió del cel d’on prové el senyal GW190814 amb la major probabilitat. Les àrees ombrejades en blau fan referència a l’anàlisi online inicial de les dades, mentre que les àrees ombrejades en púrpura fan referència a la localització final en el cel.

Quan els científics de LIGO i Virgo van detectar aquesta fusió, immediatament van enviar un avís a la comunitat astronòmica. Molts telescopis terrestres i espacials van fer un seguiment a la recerca de llum i d’altres ones electromagnètiques, però, a diferència de la famosa fusió de dues estrelles de neutrons detectada a l’agost de 2017 i que van donar lloc a l’anomenada astronomia multi-missatger, en aquest cas no es va recollir cap senyal.

Thomas Dent, coordinador del programa d’ones gravitatòries a l’Institut Gallec de Física d’Altes Energies (IGFAE), assenyala que “GW190814 mostra novament el potencial de la xarxa global de detectors per localitzar aquests misteriosos esdeveniments còsmics a l’espai amb més precisió, amb l’objectiu de buscar qualsevol emissió de llum o d’altres partícules. Estem millorant contínuament els mètodes per a la detecció i el seguiment de les fonts d’ones gravitatòries a mesura que la xarxa va ampliant-se.

Segons els científics de Virgo i LIGO, l’esdeveniment d’agost de 2019 no va ser vist en el espectre electromagnètic per diverses raons probables. En primer lloc, aquest esdeveniment estava sis vegades més lluny que GW170817, cosa que dificulta la detecció de qualsevol senyal electromagnètic. En segon lloc, si la col·lisió va involucrar dos forats negres, probablement no hi va haver cap emissió en l’espectre electromagnètic. En tercer lloc, si l’objecte més petit del sistema va ser, de fet, un estel de neutrons, el seu company forat negre 9 vegades més massiu podria haver-se’l engolit sencer; un estel de neutrons engolit completament per un forat negre no produiria cap emissió electromagnètica.

Gràcies a les millores a l’observatori Virgo/EGO, en les tècniques d’anàlisi de dades i en els models dinàmics astrofísics, àrees on l’Institut de Ciències del Cosmos de la Universitat de Barcelona (ICCUB) té un paper rellevant, esperem poder detectar més esdeveniments com GW190814 que ens permeten entendre la natura exacta d’aquests intrigants objectes astrofísics“, explica Jordi Portell, coordinador del grup Virgo al ICCUB.

La identitat de l’objecte detectat el 14 d’agost de 2019 continua sent un misteri.

A més de posar a prova el nostre enteniment de l’evolució estel·lar i de la producció d’estrelles de neutrons i forats negres en el buit de masses, la raó peculiar entre les masses del sistema binari i el fet de ser l’esdeveniment d’ones gravitatòries millor localitzat en el cel fins a la data sense contrapartida electromagnètica, ha permès dur a terme nous tests de la teoria de la gravetat i una nova mesura de la constant de Hubble, compatible amb aquella obtinguda mitjançant l’esdeveniment GW170817.

L’esdeveniment GW190814 és un bon exemple de com les ones gravitatòries tenen el potencial de canviar radicalment el nostre coneixement del cosmos tant a nivell astronòmic com a nivell de física fonamental“, declara Mario Martínez, coordinador del grup Virgo a l’Institut de Física d’Altes Energies (IFAE) de la Universitat Autònoma de Barcelona. “Les dades acumulades pels interferòmetres LIGO i Virgo ara i en els propers anys amb una major sensibilitat hi contribuiran.

Futures observacions amb Virgo, LIGO i possiblement altres telescopis podran detectar esdeveniments similars i ajudar-nos a respondre les nombroses preguntes que ha plantejat la detecció de GW190814.

Cinc grups a l’estat espanyol estan contribuint a l’astronomia d’ones gravitatòries de LIGO-Virgo, en àrees que van des del modelatge teòric de les fonts astrofísiques fins a la millora de la sensibilitat del detector per als períodes d’observació actuals i futurs. Dos grups, a la Universitat dels Illes Balears (UIB) i a l’Institut Gallec de Física de Altes Energies (IGFAE) de la Universitat de Santiago de Compostel·la (USC), formen part de la Col·laboració Científica LIGO (EEUU); mentre que la Universitat de València (UV), l’Institut de Ciències del Cosmos de la Universitat de Barcelona (ICCUB) i l’IFAE de la Universitat Autònoma de Barcelona són membres de Virgo (Europa).

Més informació: “El curioso caso de GW190814: la fusión de un agujero negro de masa estelar y un objeto compacto misterioso”

Imatges. Col·laboració Virgo i LIGO.

Primera detecció d’ones gravitatòries de la col·lisió de dos estels de neutrons… i l’origen de l’or a la Terra

6

Per primera vegada, els científics han detectat de forma directa i simultània ones gravitatòries – ondulacions en l’espai-temps – i la llum provinent d’una col·lisió espectacular de dues estrelles de neutrons. Això constitueix la primera vegada que d’un esdeveniment còsmic observat en ones gravitatòries, s’ha descobert al mateix temps la seua contrapartida òptica i la radiació d’alta freqüència emesa. D’aquesta manera, finalment, hem pogut “veure” exactament d’on provenen els senyals observats. A més s’ha pogut explicar l’origen dels metalls pesats com l’or.

El descobriment ha estat realitzat utilitzant l’Observatori d’Ones Gravitatòries per Interferometria Làser (LIGO, per les sigles en anglès) situat als EUA, el detector Virgo situat a Europa, i uns 70 observatoris terrestres, 7 d’ells espacials. La coordinació mundial de milers de científics durant setmanes per monitoritzar el mateix fenomen ha permès aquest resultat espectacular.

Dos anells de casament. Origen: col·lisió de dos estels de neutrons. Wikipedia

El 17 d’agost de 2017, astrònoms de tot el món van ser avisats d’una observació d’ones gravitatòries registrada pels detectors LIGO avançat i per Virgo avançat. Aquest esdeveniment d’ones gravitatòries, conegut ara com GW170817, semblava ser el resultat de la fusió de dues estrelles de neutrons. La idea era captar en els primers moments els senyals emesos per la font astrofísica utilitzant telescopis capaços de recollir llums de longituds d’ona diferent, des d’ones de ràdio fins a raig gamma, passant per les ones de llum visibles.

Ondulacions de la gravetat, esclats de llum (4:17)

El 17 d’agost de 2017, LIGO) i Virgo van detectar, per primera vegada, ones gravitatòries a partir de la col·lisió de dues estrelles de neutrons. L’esdeveniment no només va ser “escoltat” en ones gravitatòries, sinó que també es va veure la llum captada per dotzenes de telescopis a terra i a l’espai. (Crèdit: LIGO-Virgo)

Menys de dos segons després del senyal GW170817, el satèl·lit Fermi de la NASA va observar un esclat de raigs gamma, conegut ara com GRB170817A, i en els minuts següents a aquestes deteccions inicials, desenes de telescopis al voltant del món van començar una extensa campanya d’observació.

El telescopi Swope a Xile va ser el primer a informar sobre una font òptica brillant (SSS17a) en la galàxia NGC 4993 i altres grups addicionals van detectar de forma independent el mateix senyal transitori durant els següents minuts i hores. Durant les setmanes següents, els astrònoms van observar aquesta galàxia amb instruments sensibles en tot l’espectre electromagnètic. El conjunt d’aquestes observacions proporcionen ara una visió exhaustiva d’aquest esdeveniment cataclísmic començant aproximadament 100 segons abans de la fusió dels estels de neutrons fins a diverses setmanes després. Les observacions avalen la hipòtesi que dos estels de neutrons es van fusionar en la galàxia NGC 4993, situada a 130 milions d’anys llum de distancia – produint ones gravitatòries, un esclat de raigs gamma de curta durada i una kilonova. L’esdeveniment GW170817 marca una nova era en l’astronomia de multi-missatgers, on el mateix esdeveniment és observat amb ones gravitatòries i electromagnètiques.

Els estels de neutrons són els estels més petits i densos coneguts. D’una massa d’una estrella mitjana, el seu diàmetre és d’uns 20 km. Per això són tan densos que una sola cullereta de café de la seua matèria pesa mil milions de tones.

Es formen quan estrelles més massives exploten en forma de supernoves. Quan dues estrelles de neutrons orbiten una al voltant de l’altra, el sistema perd energia en forma d’ones gravitatòries i, per tant les dues estrelles orbiten de forma espiral estant condemnades a unir-se de forma catastròfica després de mil·lennis. En el cas observat, a mesura que l’òrbita de les dues estrelles de neutrons girava en forma d’espiral, el sistema binari emetia ones gravitatòries que van ser detectades durant uns 100 segons abans del col·lapse. Al xocar, amb una velocitat prop de la tercera part de la velocitat de la llum, es va emetre un gran esclat de llum en forma de raigs gamma observat a la Terra uns dos segons després de la detecció de les pròpies ones gravitatòries.

En els dies i setmanes posteriors a la col·lisió, altres formes de llum o radiacions electromagnètiques – incloent raigs X, ultraviolada, òptica, infraroja i ones de ràdio – van ser també detectades. Les observacions han donat als astrònoms una oportunitat sense precedents per a investigar la col·lisió de dues estrelles de neutrons. Per exemple, les observacions realitzades per l’observatori Gemini d’Estats Units, l’European Very Large Telescope i el Hubble Space Telescope revelen traces de materials recentment sintetitzats, incloent or i platí, desxifrant el misteri no resolt durant dècades sobre on es produeixen aproximadament la meitat de tots els elements químics més pesats que el ferro.

A la Universitat de les Illes Balears hi ha un grup que col·labora amb Ligo (LIGO@UIB) des de fa temps mentre que a la Universitat de València el  Valencia Virgo Group participa en la Col·laboració Virgo des de l’1 de juliol del 2016. Enhorabona als dos grups.

Més informació:
Imatges:

1.-Col·lisió cataclísmica. Il·lustració artística de dues estrelles de neutrons xocant. La quadrícula de l’espai-temps ondulant representa les ones gravitatòries que surten de la col·lisió, mentre que les bandes estretes mostren les ràfegues de raigs gamma disparats pocs segons després de les ones gravitatòries. També es representen els remolins de material expulsat de les estrelles que xoquen. Els núvols de gas brillen amb longituds d’ona visibles i d’altres tipus de llum més energètica. NSF/LIGO/Sonoma State University / A. Simonnet.

2.-Primers fotons òptics de la font d’ones gravitatòries. Imatges òptiques i infraroges del telescopi Swope i Magellan de la primera contrapart òptica d’una font d’ones gravitatòries, SSS17a, a la seua galàxia, NGC 4993. La imatge esquerra és del 17 d’agost de 2017, 11 hores després de la detecció de LIGO-Virgo, i conté els primers fotons òptics detectats de la font. La imatge a la dreta és de quatre dies més tard, quan SSS17a, les conseqüències d’una fusió d’estrelles de neutrons, es va esvair significativament i el seu color es va tornar molt més vermell.1M2H / UC Santa Cruz i Carnegie Observatories / Ryan Foley.

3.- Representació artística d’un estel de neutrons sobre la badia de San Francisco. Observeu que petita és. Més informació. NASA.

4.-GW170817: esdeveniment global d’astronomia. Un mapa dels aproximadament 70 observatoris òptics que detectaren l’esdeveniment GW170817. El 17 d’agost de 2017, els detectors LIGO i Virgo van observar ones gravitatòries causat per dues estrelles de neutrons en col·lisió. Els telescopis òptics a tot el món van observar les seqüeles de la col·lisió en les hores, dies i setmanes següents. Van ajudar a identificar la ubicació de les estrelles de neutrons i van identificar signes d’elements pesats, com l’or, en el material expulsat de la col·lisió. LIGO-Virgo

La nebulosa del Cranc mostra els seus secrets

3
Publicat el 14 de maig de 2017

Un equip internacional d’astrònoms acaba de publicar una imatge molt detallada de la nebulosa de Cranc, resultat de la combinació de dades de diversos telescopis situats a la superfície terrestre i en l’espai. Aquests instruments cobreixen quasi tot l’espectre electromagnètic, des de les ones de ràdio observades pel Very Large Array fins al potent resplendor en raigs X observat pel telescopi espacial Chandra. I per suposat, el telescopi espacial Hubble ha proporcionat la imatge de la nebulosa en llum visible mentre que la visió en infraroig ha estat proporcionada per telescopi espacial Spitzer.

Moltes vegades no som conscients que l’Univers no és només com ens el mostren els nostres ulls. La radiació que és capaç d’excitar els cons i bastons de la nostra retina, la llum anomenada visible, sols ens mostra un aspecte de la realitat del nostre entorn. Processos molt energètics com el gas gira al voltant d’un estel de neutrons brilla en llum de raig X o gamma mentre que la formació d’estels només es veu si emprem sensors de llum infraroja. Per això si volem comprendre un objecte tan complex com la nebulosa del Cranc cal combinar tota la informació disponible.

La nebulosa del Cranc és el resultat d’una violenta explosió de supernova observada per astrònoms xinesos l’any 1054. L’estiu d’aquell any, des de Xina s’observà una “estrella invitada”, un nou estel que va aparèixer en la que ara anomenen la constel·lació del Cranc. Segons conten les cròniques xineses, l’estel, que va ser visible uns mesos i es podia observar fins i tot de dia, era sis vegades més brillant que Venus.

Nebulosa del Cranc en llum visible. El púlsar, el disc d’acrecció i els dolls són invisibles amb aquesta llum. NASA, ESA, J. Hester and A. Loll (Arizona State University).

Fins fa poc, cap més registre donava fe de l’observació del fenomen però ara es creu que els natius americans feren pictogrames d’un estel brillant al costat del creixent de Lluna (encara que no és compatible la Lluna creixent en Taure en estiu). També s’ha trobat referència del fenomen en l’obra del segle 13 Meigetsuki del poeta japonés Fujiwara no Teika. També s’han trobat referencies en l’astronomia islàmica a la supernova en una copia del segle 13 feta per Ibn Abi Usaibia d’un treball d’Ibn Butlan, un metge cristià nestorià que treballava a Baghdad en aquella època.

Des de finals dels anys 60 se sap que en el centre d’aquesta nebulosa hi ha un púlsar, un  estel de neutrons superdens, tan petit com una ciutat però que concentra la massa equivalent al nostre Sol.

Aquest monstre estel·lar és el resultat de l’explosió d’un estel com a supernova. En aquest procés les diferents capes d’un estel evolucionat amb un nucli de ferro-niquel s’enfonsen. Però mentre que les més internen col·lapsen ràpidament i formen un objecte dens format per neutrons, (l’estel de neutrons), les capes més externes es troben un interior molt dur i, que emet partícules molt energètiques. Per tant, reboten i són expulsades. És l’explosió supernova.

Com que l’estrella original girava, durant el col·lapse el residu estel·lar que queda al centre augmenta la velocitat de gir de manera espectacular de la mateixa manera quan una ballarina sobre gel augmenta la velocitat del gir en plegar els braços. Al mateix temps el camp magnètic del residu s’amplifica i s’emet un flux de radiació electromagnètic en direcció a l’eix del camp. Donat que aquest eix i els de l’estel de neutrons no estan perfectament alineats, aquest flux de radiació escombra l’espai, com ho fa la llum d’un far. És el pols de radiació visible de l’estel de neutrons que capten els radiotelescopis, el púlsar. En la nebulosa del Cranc el residu que en quedà rota a la increïble velocitat d’un gir cada 33 milisegons amb un camp magnètic amplificat milions de vegades més intens que el del Sol.

https://youtu.be/xhnLljt2r_Y

La complicada forma de la nebulosa és provocada por la complexa interacció entre el púlsar, un vent ràpid de partícules que venen del púlsar, i el material expulsat originalment per l’explosió de supernova i per l’estel abans de l’explosió.

Cal fixar-se bé en la imatge més energètica, l’obtinguda en raigs X. Ací s’hi veu el disc d’acreció al voltant del púlsar així com els dos dolls de gas perpendiculars col·limats pels camps magnètics que emergeixen de les zones polars de l’estrella de neutrons. Ací baix podeu veure un esquema on les diverses parts de la imatge en raig X estan explicades.

Actualment se sap que l’explosió que va donar origen a la nebulosa, i que brillà breument com 400 milions de sols, va ocórrer a 6500 anys-llum de nosaltres. Si hagués passat a només 50 anys-llum la radiació emesa per la supernova en totes les longituds d’ona energètiques (gamma, raigs X, ultraviolat) així com les partícules d’alta energia haurien escombrat la majoria de la vida a la Terra.

El vídeo d’Adam Block compara imatges de la nebulosa obtingudes l’any 1999 amb d’altres de l’any 2012. S’hi veu clarament que el gas s’expandeix encara per l’explosió de fa quasi 1000 anys. Imagineu si va ser d’intensa l’explosió…

Imatges i vídeos:
1.- La nebulosa del Cranc en una composició que combina imatges preses en gran part de l’espectre electromagnètic. NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; y Hubble/STScI.
2.- Imatge en llum visible de la nebulosa del Cranc obtinguda pel Telescopi Espacial Hubble NASA, ESA, J. Hester and A. Loll (Arizona State University).
3.- Esquema del procés de formació de l’estel de neutrons i l’explosió supernova. Wikipedia Commons.
4.- Video de la composició de la imatge en totes les longituds d’ona.
5.- Esquema de la Nebulosa on es veu la posició del púlsar, el disc d’acrecció i els dolls.
6.- M1: el Remanent de la Nebulosa del Cranc d’Adam Block. L’animació mostra l’expansió de la nebulosa entre els anys 1999 i 2012. La imatge del 1999 està presa al VLT d’ESO. La del 2012 és del Mount Lemmon SkyCenter utilitzant el Schulman Telescope de 80 cm.

 

Karlheinz Langanke i l’origen dels elements

0

El professor de física nuclear Karlheinz Langanke parla de la importància de la física nuclear per entendre l’origen dels elements químics. Si bé els elements lleugers com el carboni o l’oxigen es creen en l’interior dels estels, els pesats com l’or o l’urani sembla que tenen un altre origen. Les supernoves i l’expulsió dels elements formats seran condicions fonamentals per a la creació de la vida.

Aquesta ha estat la meua primera entrevista televisiva. L’estiu passat, dins de les activitats de divulgació de les jornades de la Bienal de Física, celebrada al Campus de Burjassot de la Universitat de València vaig fer unes entrevistes a personalitats destacades de la física nuclear, astrofísica i energies renovables amb l’ajuda inestimable del personal de la televisió de la Universitat (MediaUni) i la d’alguns companys. Ara ja muntat el material i accessible a la web de la televisió, poc a poc us aniré posant les meues primeres incursions en el món de l’entrevista.

 

El misteri dels raigs gamma, més a prop de resoldre’s

0
Publicat el 11 d'abril de 2011

Neutron Stars mergers

En els anys 60, unes misterioses emissions esporàdiques i molt curtes de raigs gamma escalfaven el cap dels militars al càrrec dels satèl·lits espies nord-americans que escrutaven les planes soviètiques en busca d’explosions nuclears. Les emissions d’aquesta radiació tan energètica que produeixen les bombes atòmiques no venien de baix, com s’esperava, sinó de dalt. De fet arribaven al detector per darrere. Alguna cosa passava a l’espai i de moment no tenia explicació. Aquesta troballa es va mantindre en secret ja que donar-la a conéixer revelaria també l’existència dels satèl·lits espia i la tecnologia que feien servir.

Ara, acabada la guerra freda, múltiples equips investigadors observen les emissions i tracten d’explicar-les amb costoses simulacions als ordinadors més grans del món. Un equip, en el qual participa un investigador del meu departament, explica les explosions com a resultat de la col·lisió entre dues estrelles de neutrons, en el moment en que es transformen en forat negre.

La nota de premsa que ha enviat la Universitat de València per publicitar aquests resultats ho descriu tot molt bé. A més s’ha fet un vídeo on es veu gràficament el que s’explica.


La col·lisió d’estrelles de neutrons produeix potentíssims centelleigs de llum gamma i també ones gravitatòries en l’espai que, tot i haver estat predites per Einstein, no havien estat encara detectades.

La seua comprensió ens acostaria, possiblement, a les claus d’una inesgotable font d’energia procedent de l’acreció de forats negres. Un equip internacional d’investigadors que treballa amb Miguhttp://blocs.mesvilaweb.cat/marco/wp-admin/users.phpel A. Aloy (Universitat de València), acaba d’aportar resultats molt valuosos per a donar resposta a aquest enigma de l’astrofísica.

(A la web de YouTube teniu també la transcripció en anglés del que es conta al vídeo. Punxeu en Visualitza la descripció completa)

La col·lisió d’estrelles de neutrons dóna lloc a potentíssims centelleigs de llum gamma. Durant una fracció de segon, una erupció de rajos gamma és tan lluminosa com totes les estrelles visibles des de la Terra, i produeix ones gravitatòries en l’espai que ja van ser predites per Albert Einstein, en la seua Teoria de la Relativitat, però que fins a avui no han pogut ser detectades. L’amplitud, durada i forma específica d’aquestes ones és un enigma, doncs, per a la ciència. La seua comprensió ens acostaria, possiblement, a les claus d’una inesgotable font d’energia procedent de l’acreció de forats negres. El treball que apareix publicat avui ‘en Astrophysical Journal Letters’, per l’equip internacional d’investigadors de Miguel A. Aloy (Universitat de València), aporta resultats molt valuosos i noves eines per a prosseguir i dur a bon terme les investigacions en aquest camp de l’astrofísica.

Aquestes explosions han desconcertat als científics durant anys: es tracta de centelleigs de llum gamma en els quals arriba a alliberar-se més energia en una fracció de segon que la que produeixen totes les estrelles visibles en aqueix mateix període de temps. Què és el que causa aquestes explosions? Un equip internacional de científics, en el qual treballa el professor de la Universitat de València Miguel A. Aloy, està un pas més aprop de resoldre l’enigma. En els còmputs realitzats durant sis setmanes en els superordenadors de l’Institut Max-Planck de Física Gravitacional, els investigadors van simular com la fusió de dues estrelles de neutrons amb camps magnètics menuts forma un forat negre envoltat per un torus d’acreció calent. En aquest procés, un camp magnètic extraordinàriament intens amb estructura de doll es forma al llarg de l’eix de rotació. Aquest camp magnètic és crucial per a entendre el procés de la generació d’erupcions de rajos gamma de curta durada: del caos que resulta després de la col·lisió, es forma una estructura ordenada, un doll de plasma d’enorme energia en el qual els rajos gamma de curta durada poden produir-se. (Astrophysical Journal Letters, 2011).

La primera erupció de rajos gamma va ser observada per casualitat. A la fi dels anys 60, un satèl·lit espia americà que estava cercant proves d’assajos de bombes atòmiques sobre la terra, va detectar la primera erupció de rajos gamma (ERG). No procedia de la Terra, sinó de l’espai exterior. Entre 1991 i la data de finalització de la seua missió al juny 2000, el satèl·lit americà Compton va registrar al voltant d’una ERG al dia- encara que la causa d’aquestes gegantesques explosions cosmològiques seguia sent un misteri.

Abans d’aquest treball ja es pensava que la fusió d’estrelles de neutrons era un fet propici per a generar ERG de curta durada. No obstant això, els científics no eren capaços d’explicar que el caos resultant de la fusió d’aquestes estrelles ultra compactes, amb ràdios d’uns 20 quilòmetres i summament denses, es podia produir a partir d’un corrent de plasma -un doll- orientat al llarg de l’eix de rotació. Aquests dolls són un ingredient essencial en la formació de les erupcions de raigs gamma. L’enigma a resoldre era, per tant, com podia la força impulsora d’aquest procés crear una estructura ordenada, a través de la qual canalitzar l’enorme energia alliberada pel procés d’acreció de matèria sobre forats negres en rotació. Per a situar al lector, cal dir que l’acreción és el mecanisme de conversió d’energia més eficient que es coneix. Pot arribar a convertir quasi el 30% de la massa en energia. Per comparança, menys d’un 0.6% de la massa es converteix en energia durant la fusió de nuclis d’hidrogen en el cor de les estrelles.

Miguel A. Aloy, investigador principal de l’European Research Councill Starting Independent Grant CAMAP en la Universitat de València, ha estat treballant amb el grup internacional de científics que ha trobat una possible explicació per a les erupcions de rajos gamma de curta durada (poden durar fins a 3 segons). L’equip va resoldre les equacions d’Einstein i les equacions de la magnetohidrodinámica per a dues estrelles de neutrons que arriben a fusionar-se donant lloc a un forat negre, i van deixar que la simulació seguira per un període de temps molt més llarg després de la formació del mateix.

El que van descobrir va ser que, inicialment, es forma un anell de matèria calenta amb un camp magnètic relativament feble envoltant el forat negre resultant, el qual rota sobre el seu eix a velocitats molt properes a les de la llum. El moviment de rotació d’aquest sistema inestable genera un camp magnètic ordenat, que és summament poderós, sent la seua intensitat d’uns 1015 Gauss al llarg de l’eix de rotació.

Per a fer-nos una idea de la increïble magnitud d’aquest camp magnètic, es pot dir que és 1016 (10,000,000,000,000,000) vegades més intens que el camp magnètic de la Terra. Ací radica la importància d’aquest nou resultat: s’ha demostrat, per primera vegada, que es pot formar una estructura al voltant de l’eix de rotació del sistema, a través de la qual, plasma extraordinàriament calent procedent dels voltants del forat negre és llançat a l’espai. És més, la citada estructura és clau perquè el plasma ejectat siga col·limat i forme sengles dolls en els quals es produeix la radiació gamma que dóna lloc a una ERG de curta durada.

Aquesta és la primera vegada que hem estudiat el procés sencer des de la fusió de les estrelles de neutrons fins a la formació dels dolls”, ha afirmat Luciano Rezzolla, un dels membres de la col·laboració internacional de l’Institut Max-Planck de Física Gravitacional (Golm, Alemanya). “Açò suposa un gran pas avant perquè abans no sabíem com era possible crear l’ordre necessari perquè les ERG es crearen a partir del caos regnant després del naixement del forat negre”, assenyala Miguel A. Aloy. Mitjançant un esforç computacional considerable, els científics van engegar una simulació durant el doble del temps normal, completant els seus càlculs en unes sis setmanes. La simulació completa mostra el que passa en només 35 mil·lisegons.

Ara hem alçat un vel important, que estava amagant el motor central de les ERG i hem oferit una connexió entre el model teòric i les observacions, en mostrar que una estructura de tipus doll es produeix realment mitjançant l’organització pròpia del camp magnètic en una fusió d’estrelles de neutrons”, afig Chryssa Kouveliotou de l’Agència Americana de l’Espai, NASA.

Així mateix, “s’ha reconstruït la seqüència correcta dels esdeveniments: primer naix el forat negre i poc després escoltem els seus plors natals en forma de radiació gravitatòria i una formidable erupció de rajos gamma”, apunta Miguel A. Aloy. La forma i amplitud del senyal gravitatori també ha estat calculada pels científics que signen aquest treball. Aquestes menudes ones en espai-temps van ser ja predites per Albert Einstein en la seua Teoria General de la Relativitat, però no han estat detectades de forma directa fins a la data. La raó és que l’efecte que el pas d’aquestes ones gravitatòries produeix sobre la matèria és realment minúscul i, en la pràctica, es confonen amb altres senyals també detectats. S’espera que les propietats del senyal gravitatori simulades ajuden a altres grups de científics a descobrir ones gravitatòries reals entre les dades obtingudes pels detectors actuals o de futura construcció.

Actualment hi ha cinc detectors interferomètrics d’ones gravitacionals al món: el projecte alemany/britànic GEO800, prop de Hanover, Alemanya, els tres detectors LIGO als EEUU- Louisiana i Washington i el projecte franc/italià Virgo, a Pisa, Itàlia. Un nou detector espacial (LISA– Laser Interferometer Space Antenna) es troba entre els plans de l’Agència Europea de l’Espai i la NASA, i el seu llançament està programat per a 2020.

Publicació original: L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou & M. A. Aloy, /The missing link: merging neutron stars naturally produce jet-like structures and can power short gamma-ray bursts/,// ApJ//// *732* L6 http://iopscience.iop.org/2041-8205/732/ /L6 Astrophysical Journal Letters, 2011.

El video adjunt ha estat realitzat pel Goddard Space Flight Center de la NASA per a la divulgació d’aquest treball.

Publicat dins de La Galàxia i etiquetada amb , | Deixa un comentari