Pols d'estels

El bloc d'Enric Marco

Arxiu de la categoria: Cosmologia

Els astrònoms troben l’evidència més forta fins ara d’ones gravitatòries de parells de forats negres supermassius

0
Publicat el 29 de juny de 2023

Article original Daniel Reardon i Andrew Zic

Quan els forats negres i altres objectes enormement massius i densos giren els uns als altres, emeten ondulacions en l’espai i el temps anomenades ones gravitatòries. Aquestes ones són una de les poques maneres que tenim d’estudiar els enigmàtics gegants còsmics que les creen.Els astrònoms han observat els “xirps” d’alta freqüència dels forats negres en col·lisió, però el soroll d’ultra baixa freqüència dels forats negres supermassius que orbiten entre si s’ha demostrat més difícil de detectar. Des de fa dècades, hem estat observant púlsars, un tipus d’estrella que batega com un far, a la recerca de la lleugera ondulació d’aquestes ones.

Avui, les col·laboracions de recerca de púlsars d’arreu del món, inclosa la nostra, Parkes Pulsar Timing Array, han anunciat l’evidència més sòlida fins ara de l’existència d’aquestes ones.

Què són les ones gravitatòries?

El 1915, el físic d’origen alemany Albert Einstein va presentar una visió innovadora de la natura de la gravetat: la teoria general de la relativitat.

La teoria descriu l’Univers com una “tela” de quatre dimensions anomenada espai-temps que pot es estirar, estrènyer, doblegar-se i torçar-se. Els objectes massius distorsionen aquest teixit per donar lloc a la gravetat.

Una conseqüència curiosa de la teoria és que el moviment d’objectes massius hauria de produir ondulacions en aquest teixit, anomenades ones gravitatòries, que s’estenen a la velocitat de la llum.

Es necessita una quantitat enorme d’energia per crear la més petita d’aquestes ondulacions. Per aquest motiu, Einstein estava convençut que les ones gravitatòries mai s’observarien directament.

Un segle més tard, els investigadors de les col·laboracions LIGO i Virgo van presenciar la col·lisió de dos forats negres, que van enviar un esclat d’ones gravitacionals a tot l’Univers.

Ara, set anys després d’aquest descobriment, els radioastrònoms d’Austràlia, la Xina, Europa, l’Índia i Amèrica del Nord han trobat proves d’ones gravitacionals d’ultra baixa freqüència.

Un lent rebombori d’ones gravitatòries

A diferència de l’esclat sobtat d’ones gravitacionals que es va informar el 2016, aquestes ones gravitatòries d’ultra baixa freqüència triguen anys o fins i tot dècades a oscil·lar.

Es creu que són produïts per parells de forats negres supermassius, que orbiten en els nuclis de galàxies llunyanes a tot l’Univers. Per trobar directament aquestes ones gravitatòries, els científics haurien de construir un detector de la mida d’una galàxia.

Una il·lustració que mostra la Terra, els púlsars i les ones gravitatòries.
A mesura que les ones gravitacionals deformen l’espai-temps al voltant de la Terra, distorsionen els temps d’arribada de les ones de ràdio des de púlsars llunyans. OzGrav / Swinburne / Carl Knox

O podem utilitzar púlsars, que ja estan repartits per la galàxia, i els polsos dels quals arriben als nostres telescopis amb la regularitat de rellotges precisos.

El radiotelescopi Parkes de CSIRO, Murriyang, Austràlia, ha estat observant una sèrie d’aquests púlsars durant gairebé dues dècades. El nostre equip del Parkes Pulsar Timing Array és una de les diverses col·laboracions arreu del món que avui han anunciat haver trobat pistes d’ones gravitatòries en els seus darrers conjunts de dades.

Altres col·laboracions a la Xina (CPTA), Europa i l’Índia (EPTA i InPTA) i Amèrica del Nord (NANOGrav) veuen senyals similars.

El senyal que busquem és un “oceà” aleatori d’ones gravitatòries produïdes per tots els parells de forats negres supermassius de l’Univers.

Observar aquestes ones no només és un altre triomf de la teoria d’Einstein, sinó que té conseqüències importants per a la nostra comprensió de la història de les galàxies a l’Univers. Els forats negres supermassius són els motors del cor de les galàxies que s’alimenten de gas i regulen la formació estel·lar.

El senyal apareix com un soroll de baixa freqüència, comú a tots els púlsars de la matriu. A mesura que les ones gravitacionals s’estenen sobre la Terra, afecten les taxes de rotació aparents dels púlsars.

L’estirament i la compressió de la nostra galàxia per aquestes ones, en última instància, canvien les distàncies als púlsars en només desenes de metres. Això no és gaire quan els púlsars solen estar a uns 1.000 anys llum de distància (és a dir, a uns 10.000.000.000.000.000.000 metres).

Notablement, podem observar aquests canvis en l’espai-temps com a retards de nanosegons als polsos, que els radioastrònoms poden seguir amb relativa facilitat perquè els púlsars són rellotges naturals tan estables.

Què s’ha anunciat?

Com que les ones gravitacionals d’ultra baixa freqüència triguen anys a oscil·lar, s’espera que el senyal sorgeixi lentament.

Primer, els radioastrònoms van observar un estrèpit comú als púlsars, però es desconeixia el seu origen.

Ara, l’empremta dactilar única de les ones gravitatòries comença a aparèixer com a atribut d’aquest senyal, observat per cadascuna de les col·laboracions de matrius de temporització de púlsars d’arreu del món.

Aquesta empremta digital descriu una relació particular entre la similitud dels retards de pols i l’angle de separació entre parells de púlsars al cel.

La relació sorgeix perquè l’espai-temps a la Terra s’estira, canviant les distàncies als púlsars d’una manera que depèn de la seua direcció. Els púlsars junts al cel mostren un senyal més semblant que els púlsars separats en angle recte, per exemple.

Radiotelescopi Parkes de CSIRO, Murriyang. CSIRO / A. Cherney

L’avenç ha estat possible gràcies a la millora de la tecnologia dels nostres observatoris. El Parkes Pulsar Timing Array té el conjunt de dades d’alta qualitat més llarg, gràcies al receptor avançat i la tecnologia de processament de senyal instal·lada a Murriyang. Aquesta tecnologia ha permès al telescopi descobrir molts dels millors púlsars utilitzats per col·laboracions d’arreu del món per a la recerca d’ones gravitatòries.

Els resultats anteriors de la nostra col·laboració i d’altres van mostrar que el senyal esperat de les ones gravitatòries faltava a les observacions del púlsar.

Ara, sembla que estem veient el senyal amb relativa claredat. En segmentar el nostre conjunt de dades llarg en “tall temporals” més curtes, mostrem que el senyal sembla que creix amb el temps. Es desconeix la causa subjacent d’aquesta observació, però pot ser que les ones gravitatòries es comporten de manera inesperada.

La nova evidència d’ones gravitacionals d’ultra baixa freqüència és emocionant per als astrònoms. Per confirmar aquestes signatures, les col·laboracions globals hauran de combinar els seus conjunts de dades, la qual cosa augmenta la seua sensibilitat a les ones gravitatòries moltes vegades.

Els esforços per produir aquest conjunt de dades combinats estan en curs en el marc del projecte International Pulsar Timing Array, els membres del qual es van reunir a Port Douglas, a l’extrem nord de Queensland, la setmana passada. Els futurs observatoris, com el Square Kilometer Array en construcció a Austràlia i Sud-àfrica, convertiran aquests estudis en una rica font de coneixement sobre la història del nostre Univers.

Set lliçons breus de física

0
Publicat el 15 de maig de 2020

Tot el que cal saber sobre física, l’univers i el nostre lloc al món en set lliçons plenes de bellesa que han captivat els lectors italians.

Set lliçons breus de física
Carlo Rovelli

Llibres Anagrama
Traducció: Laia Font i Mateu
Publicació: 02/03/2016
ISBN 978-84-339-1529-0

La ciència ens ensenya com comprendre més bé el món, però també ens mostra com és d’ample allò que encara no sabem.

I és que malgrat els grans avenços del segle XX, i al contrari del que gran part de la societat creu, la ciència moderna no és l’explicació definitiva del món sinó que només pretén ser una aproximació a la realitat. Una realitat que, sobretot en la física contemporània, se’ns presenta fugissera i de vegades incomprensible.

Tot i això, el físic italià Carlo Rovelli, en el petit però dens llibre Set lliçons breus de física, s’endinsa en el difícil camí de fer comprensible, per a un públic no necessàriament de ciències, els fonaments de la física del segle XX, amb els seus èxits fulgurants, els seus fracassos, les seues contradiccions i especialment les conseqüències que se’n deriven per a la tecnologia actual i per al pensament humà.

L’obra, que ha estat un best-seller a Itàlia, explica com un poètic conte, amb sis capítols o lliçons, de manera senzilla però realment profunda, les grans teories que han permès el desenvolupament de la societat moderna: la Relativitat General i la Mecànica Quàntica. Unes teories potents però malauradament contradictòries entre si. La primera, la més bella i exigent de les teories científiques, segons el físic soviètic Lev Landau, ens aboca a un espaitemps continu en què la matèria i l’espai-temps es combinen contínuament, com un continu joc del gat i la rata. La segona ens du a un món estrany en què les partícules només existeixen quan interaccionen i on l’atzar hi juga un paper fonamental. En paraules de l’autor, la realitat sembla ser només interacció. Dues teories que tracten d’explicar el món però que no poden ser veritat al mateix temps. L’espaitemps corbat continu front a l’espai pla dels quàntums, dues maneres de veure el món que funcionen només en el seu àmbit d’aplicació.

Un físic no s’hauria de molestar per aquesta dicotomia. Els conflictes d’aquest tipus entre teories d’èxit són una oportunitat per avançar cap a una nova física. Són els moments en què quelcom ocult trau la poteta però no ens deixa veure gaire més. La natura sempre és tímida en mostrar-nos els secrets. Ara ens cal una teoria que ho unifique tot, com podria ser la Gravitació Quàntica de Llaços en la qual Carlo Rovelli n’és un dels desenvolupadors. Aquesta teoria proposa la quantització de l’espaitemps, en què, a semblança de la quàntica, tot és interacció. I, si un dia s’arriba a trobar un observable, si arriben a reeixir alguns dels experiments proposats, serà una veritable revolució de la física. De moment, però, cal continuar treballant.

I en aquesta nova realitat proposada què hi fem nosaltres com a humans? Quina és la realitat que percebem, quina és la nostra realitat, què és el temps, què és el present? En aquest món de la física contemporània on l’atzar i la interacció són la norma, som realment lliures? Nosaltres som el subjecte que observa aquest món amb el qual interaccionem, però al mateix temps en som part integrant d’aquest. Som fets també per partícules, llums i intercanvis de la mateixa manera que ho són les galàxies i els altres éssers vius de la Terra. Ho veiem des de dins i tractem d’entendre-ho amb la potent però limitada xarxa neuronal del nostre cervell. Carlo Rovelli, en la darrera lliçó, ens explica el seu punt de vista sobre la humanitat, sobre la complexa realitat de què estem fets. En definitiva, ens diu que allò específicament humà no ens separa de la natura, és la nostra natura.

El món que ens envolta, que hem vist per la finestra durant aquests mesos de confinament, ens sembla bell, continu, ordenat i que flueix al ritme de les estacions. Tenim però una visió desenfocada de la realitat. Veiem el llac amb l’aigua tranquil·la, però de lluny no en percebem l’estructura fina, les molècules d’aigua movent-se, trencant-se, els quarks dins dels protons vibrant, i, més subtilment encara, les possibles ínfimes porcions de l’espaitemps.

I acabe amb la mateixa expressió poètica en què acaba el llibre: A la riba del que sabem, en contacte amb l’oceà de tot el que no sabem, brillen el misteri del món, la bellesa del món, i ens deixen sense alè.

Quart llibre del confinament.


Joan Olivares va fer, fa uns mesos, una crònica més llarga i consistent sobre el llibre en Nosaltres La Veu.

‘Set lliçons breus de física’, de Carlo Rovelli

LA LLIBRERIA: CIÈNCIA

per Joan Olivares

Stephen Hawking retorna als estels

0

Aquesta nit passada el cosmòleg anglés Stephen Hawking ens ha deixat. El seu extraordinari llegat científic  ha ajudat a entendre millor els forats negres, com va ser l’origen de l’univers i com en serà el final. Però no ha estat un científic tancat al seu despatx i conegut sols en el món acadèmic. Com el seu admirat Einstein, ha sigut enormement popular, ha participat en sèries o films com Big Bang Theory, Star Trek i ha estat representat en sèries d’animació amb fort contingut científic com Futurama o els Simpsons.

Mostrava un aspecte dèbil, unes grans dificultats de comunicació que el mantenien unit a un sintetitzador de veu, sempre lligat a la cadira de rodes, a causa d’una greu discapacitat per patir esclerosi lateral amiotròfica (ELA) i, malgrat totes aquestes dificultats, ha aconseguit reeixir en una sempre difícil carrera científica. Potser també ha estat enormement popular per les seues dificultats vitals, una icona del científic estrany i alhora genial .

Però que en podem dir de les seues contribucions científiques? Actualment era Director de Recerca al Centre for Theoretical Cosmology de la University of Cambridge.[Però fins el 2009 havia ocupat la càtedra Lucasiana de la mateixa universitat que allà al segle XVII ocupà Newton.  El seu treball de recerca, molt teòric, es dedicà a anar més enllà en el coneixement de l’origen i final de l’Univers i a tractar de crear una cosmologia que conjugara el paper de la Mecànica Quàntica amb la Gravitació. Però el que li ha aportat un major reconeixement al món científic ha estat la seua contribució al coneixement dels forats negres.

A més, no estava d’acord amb la interpretació clàssica de la mecànica quàntica, sinó que era un ferm defensor de la teoria dels mons múltiples (many-worlds), la hipòtesi que afirma, en termes senzills, que hi ha un nombre molt gran, potser infinit, d’universos, i tot el que possiblement hauria pogut ocórrer en el nostre passat, però no ocorregué, finalment s’ha produït en el passat d’algun altre univers o universos.

A partir de la seua tesi doctoral i després amb una fructífera col·laboració amb el també físic anglés Roger Penrose, presentà els teoremes de singularitat de Penrose–Hawking pels quals l’univers havia d’haver nascut a partir d’una singularitat, un punt d’energia i densitat infinita, encara que posteriorment Hawking ho matisà explicant que la relativitat general no funcionaria molt prop del moment inicial o temps de Planck.

Tanmateix el tema de recerca que el faria famós va ser determinar que els forats negres no són eterns sinó que perden energia contínuament i que, molt a la llarga, finalment s’evaporen.

Sabem que d’un forat negre no pot eixir ni la llum. L’horitzó d’esdeveniments és la frontera que separa el forat negre de la resta de l’univers. Segons la mecànica quàntica, com a conseqüència del Principi d’Incertesa de Heisenberg, es produeixen de manera espontània fluctuacions quàntiques del buit, variacions temporals de l’energia en un punt de l’espai. Això permet la creació durant un temps molt curt de parelles de partícula-antipartícula, d’electrópositró o de fotó-fotó, per exemple, a partir del buit. Es diu que són parelles de partícules virtuals: en condicions normals, la partícula s’anihila gairebé instantàniament amb la companya antipartícula. Ara bé, si aquest mateix procés s’esdevé a prop de l’horitzó d’esdeveniments d’un forat negre (però fora del forat negre), pot ser que una partícula caiga a l’interior del forat negre i l’altra s’escape. Les dues partícules ja no es podran trobar mai més per anihilar-se i esdevindran reals. El forat negre haurà de perdre energia per compensar la creació de les dues partícules. Aquest fenomen té com a conseqüència l’emissió neta de radiació del forat negre, l’anomenada Radiació de Hawking i, a causa de l’equivalència massa-energia (E= mc2), la disminució de la massa d’aquest i a la llarga la seua desaparició o evaporació.

El seu treball era molt teòric, sempre al voltant de les relacions entre la Quàntica i la Teoria General de la Relativitat, l’origen i final de l’Univers, i l’estructura dels forats negres. Tanmateix Stephen Hawking va tractar de popularitzar-lo a través de diversos llibres per al gran públic com el famós Breu història del temps (1988) de la qual féu una versió simplificada Brevíssima història del temps (A Briefer History of Time) el 2005. Així i tot, el tema és complicat i la lectura d’aquests llibres necessita d’un fort esforç intel·lectual per comprendre’ls.

Hawking no es va limitar a relacionar-se només amb el món acadèmic. Potser per la seu discapacitat i, segurament també per la complexitat dels seus descobriments, va ser enormement popular. En això últim s’assemblava a Albert Einstein, la Teoria de la Relativitat del qual trigà molts anys a comprendre’s.

Era molt sorneguer i, per demostrar que els viatges al passat no eren possibles, era capaç de preparar una festa per a futurs viatgers del temps i convocar-la ja passada la data de la festa. Evidentment no hi assistí ningú.

Hawking era la icona científica desitjada de les sèries televisives amb ambient científic com Big Bang Theory, Star Trek o les sèries d’animació més amigues de la ciència com la fantàstica Futurama o la sempre interessant Els Simpsons. Per cert, hi ha un llibre dedicat a la Ciència dels Simpsons.

Per altra banda, creia que el futur de la humanitat estava en la colonització d’altres planetes i l’abandó del nostre a causa del canvi climàtic. Tanmateix era molt crític amb la pràctica usual de revelar la nostra situació a l’Univers ja que l’existència d’extraterrestres perversos no li semblava descartable.

Fa dos anys Stephen Hawking i el milionari rus Iuri Milner anunciaren que volien impulsar un projecte espacial ambiciós, batejat amb el nom de ‘Starshot‘, per explorar el sistema estel·lar d’Alfa Centauri amb milers de naus diminutes impulsades des de la Terra per un potent raig làser.

En els últims anys Hawking va acceptar ser un model per a la gent discapacitada i realitzà conferencies i participà en activitats de conscienciació. Motivat pel desig d’augmentar l’interès públic en els vols espacials i per mostrar el potencial de les persones amb discapacitat, el 2007 va participar en un vol de gravetat zero en un avió de gravetat reduïda, durant el qual va experimentar la ingravidesa vuit vegades.

Com els esportistes, també hi ha icones de la ciència. Stephen, que el retorn a la pols dels estels et siga lleu. Gràcies per tot.

Imatges.

1.- Stephen Hawking. Wikimedia Commons.
2.- Esquema de la radiació de Hawking. Herman Verlinde’s Homepage. Princeton University.
3.- Invitació sorneguera als viatgers del temps.
4.- Fotograma de Futurama. Fry amb el Vice President Al Gore, l’actriu Nichele Nichols, el físic Dr. Stephen Hawking, i Gary Gygax (el creador de Dungeons & Dragons).
5.- Hawking en un vol per comprovar la gravetat zero. Jim Campbell/Aero-News Network
6.- Stephen Hawking retorna als estels. Anònim. Via @playprotons.