El 25 de novembre de 1915, Albert Einstein, que ja havia revolucionat la física deu anys abans amb la Teoria de la Relativitat Especial, va presentar a l’Acadèmia Prussiana de les Ciències, a Berlín, l’extensió d’aquesta teoria, la seua Teoria de la Relativitat General. Potser no som conscients de les portes científiques i tecnològiques que aquest treball va obrir al progrés de la humanitat, però sense aquest avanç científic el món en que vivim seria ben diferent.
Einstein no havia quedat del tot satisfet amb la seua teoria de la Relativitat Especial l’any 1905. S’havia eliminat el concepte de simultaneïtat en l’espai: un objecte tenia un temps propi depenent de la seua velocitat. És a dir, el temps d’un objecte mòbil es retarda a mesura que la seua velocitat s’acosta a la velocitat de la llum. No hi ha un temps universal per a tots els observadors com preveu la física clàssica. Tanmateix els objectes reals es mouen en l’espai entre grans masses com les dels planetes, del Sol i de les estrelles. Que passava si s’incorporava la gravetat a la teoria de la relativitat especial? És a dir, calia construir una teoria de la gravitació relativista.
Einstein va trigar uns deu anys en poder contestar aquesta pregunta, enmig de terribles problemes familiars. Però així com en la teoria del 1905 les formules que l’expliquen són ben senzilles i fàcils d’entendre, les equacions de la Relativitat General que va exposar per primera vegada a l’Acadèmia Prussiana de les Ciències són d’una complexitat enorme.
Per als lectors d’aquest apunt només ens cal entendre que el que aquestes equacions ens diuen són l’equivalència entre la matèria-energia de l’Univers i la seua geometria. La part esquerre de la igualtat (on estan les R) ens indica com es comporta l’espai-temps, com es deforma, quin és el camí que segueix la llum, mentre que la part dreta (amb al G, T, c…) ens dóna el contingut matèria i energia de l’Univers. Dit d’una altra manera, la matèria deforma la geometria de l’univers, mentre que la forma de l’espai-temps indica com s’han de moure els objectes. Per tant la Teoria de la Relativitat General és una nova Teoria de la Gravetat, que ha fet més general la teoria de la Gravitació de Newton.
Parafrasejant John Wheeler, la Teoria de la Relativitat General d’Einstein pot resumir-se d’aquesta manera: l’espai-temps diu a la matèria com ha de moure’s; la matèria diu a l’espai temps com ha de corbar-se.
La teoria de la Relativitat General va tindre un enorme èxit des que fou anunciada. Aconseguí explicar el moviment anòmal de Mercuri, que fins aquell moment portava de cap els astrònoms. El periheli del planeta, el punt més pròxim al Sol, no està en un punt fixe en l’espai sinó que va precessant (dibuix dreta). En la marc de la teoria de la Gravetat de Newton l’òrbita ha de ser estable (dibuix esquerra) i, per tant, aquest fenomen no tenia explicació. Einstein aconseguí explicar-ho com a resultat de la deformació de l’espai-temps causat per la gran massa solar.
L’experiment, però, que confirmà que la teoria d’Einstein era correcta va ser comprovar que el camí que segueix la llum que prové de les estrelles es corba en presència d’una gran massa. Aquest desplaçament de la posició de les estrelles es comprovà en l’observació de l’eclipsi de Sol de 1919. Una vegada amagat el Sol darrere de la Lluna, les estrelles del voltant eren visibles i podien ser fotografiades. Es comprovà que no estaven en la seua posició correcta sinó desplaçades. Per tant la llum es corba en presència d’una massa. Aquesta confirmació de la teoria de la gravetat d’Einstein fou tan espectacular que aparegué en portada dels principals diaris del món. L’experiment s’ha fet múltiples vegades. Una prova d’alta precisió de la bondat de la Relativitat General es va realitzar fa uns anys aprofitant l’alineació de la sonda Cassini que està a Saturn, el Sol i la Terra. Els senyals de ràdio enviats entre la Terra i la sonda (ona verda) es va retardar i desviar per la deformació de l’espai-temps (línies blaves), a causa de la massa del Sol.
Però la exactitud de la teoria d’Einstein s’ha confirmat també en el fenomen de les lents gravitacionals. Galàxies massives deformen l’espai temps i fan que la imatge d’altres galàxies més llunyanes apareguen deformades i amplificades. Moltes vegades aquestes galàxies apareixen com a filaments corbats formant una espècie d’anell de llum.
Una de les prediccions de la Teoria de la Relativitat encara no ha estat totalment confirmada. En principi les masses en moure’s han de provocar unes ones de l’espai-temps. Aquestes encara no han estat observades però diversos experiments estan ja preparats per observar-los abans que s’acabe la dècada, segons ens asseguren els experts. De moment només se les ha detectat de manera indirecta en el moviment d’estels pulsars binaris. Per exemple, només l’existència d’aquestes ones gravitacionals pot explicar el moviment del púlsar binari PSR B1913+16. Les dues estrelles de neutrons en òrbita estan convergint a poc a poc a causa de la pèrdua d’energia per radiació gravitatòria, cosa que farà que el sistema col·lapse en uns 300 milions d’anys.
La Relativitat General ens ha permés explicar l’Univers com un tot, el seu origen i la seua evolució, el que en diem Cosmologia. Però també ha permés explicar els objectes de gran massa, els objectes compactes com ara els forats negres, els estels de neutrons i la física de la gravetat extrema. A més a més ha tingut un enorme impacte en la societat. Per exemple, l’extrema precisió del GPS no seria possible sense tindre en compte els efectes relativistes. En aquest article també podreu veure uns altres curiosos efectes conseqüència de la relativitat.
Finalment recordar-vos que la pel·lícula Interstellar de Christopher Nolan (2014) utilitza de manera notable i acurada els efectes predits per la Relativitat d’Einstein per desenvolupar la trama. Si no l’heu vista encara no badeu. Seria un bonic homenatge a la grandiosa figura d’Einstein.
Figures:
1.- Estàtua d’Albert Einstein a l’entrada del Parque de las Ciencias de Granada.
2.- Equacions d’Einstein.
3.- Que significa cada terme de les equacions d’Einstein.
4.- Precessió del periheli de Mercuri.
5.- Experiment de la deflacció de la llum realitzat amb la sonda Cassini.
6.- Esquema del pulsar doble PSR B1913+16.
Hola Sr. Marco,
Primer de tot, gràcies pels seus articles.
Només li volia comentar que l’enllaç a la pàgina que parla dels “altres curiosos efectes conseqüència de la relativitat.” és incorrecte. Sembla que hauria de ser aquest altre: http://www.iflscience.com/physics/4-examples-relativity-everyday-life
Cordialment,
EEM
Ho corregesc. Moltes gràcies.
Enric