Ciència nombres i lletres

Activitats per descobrir la intel·ligència. Divulgació científica i cultural.

Arxiu de la categoria: Matemàtica

Els nombres triangulars, que d’alguna manera són similars als quadrats

Publicat el 22 de febrer de 2019 per Jordi Domènech i Arnau

Els grecs, i prèviament al menys babilònics i egipcis, coneixien perfectament els nombres quadrats, són aquells que compten una disposició quadrada d’objectes.

Setze és un nombre quadrat ja que setze baletes es poden posar en aquesta disposició

De la mateixa manera, coneixien els nombres triangulars, definits d’igual manera però en disposició triangular:

Vint-i-un és un nombre triangular ja que vint-i-una baletes es poden posar en aquesta disposició

Si els quadrats són molt més famosos es per que tenen moltes més aplicacions en matemàtiques, des d’elementals a les més complexes. Però no per això els triangulars deixen de ser interessants.

La sèrie dels nombres triangulars comença: 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120… Els podem obtenir fàcilment de les sumes parcials de: 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8…

Calcular el nombre triangular que correspon a la figura amb n objectes de costat, és gairebé tan fàcil com calcular el quadrat. Si el quadrat d’n el calculem fent n × n, el nombre triangular corresponent es calcula per n × (n + 1) / 2. Naturalment si n és parell n + 1 és senar i recíprocament, o sigui que el seu producte sempre és parell i es pot dividir per dos. Una manera de veure d’on surt aquesta fórmula és mitjançant la següent figura:

A l’esquerra hi tenim dos triangles iguals, en aquest cas de costat quatre. Si reordenem les baletes veiem que formen un rectangle de 4 × 5 —genèricament d’n × (n + 1)–. I com que el rectangle conté dos triangles amb la mateixa quantitat de baletes, cada triangle en tenia la meitat, o sigui n × (n + 1) / 2.

Una aplicació dels nombres triangulars, que vaig veure intuïtivament quan era petit, és el problema del brindis. Si sóc a una taula amb n persones més —en definitiva n + 1 persones— i tots brindem amb tots, quants brindis hi ha hagut? El resultat és el triangular d’n. Si jo també en compto per fer  el nombre n, la resposta és el triangular de (n – 1) que el podem calcular amb la fórmula n × (n – 1) / 2.

Hi ha fórmules curioses amb els nombres triangulars, per exemple, el nombre triangular d’n elevat al quadrat, és la suma dels cubs entre 1 i n, per exemple, el triangular de 5, que és 15, si l’elevem al quadrat ens dóna 225 i aleshores 1³ + 2³ + 3³ + 4³ + 5³ = 1 + 8 + 27 + 64 + 125 = 225.

Si agafem la sèrie dels quadrats —1, 4, 9, 16, 25…—, calculem els seus inversos i els sumem 1/1 + 1/4 + 1/9 + 1/16 + 1/25… —aquí els punts suspensius volen dir que hem de continuar fins l’infinit—,  ens trobem amb un famós problema de les matemàtiques, anomenat problema de Basilea, que Euler va solucionar el 1733, 84 anys més tard de quan es va plantejar. El resultat és el curiós nombre π²/6. Podríem pensar aleshores que la suma dels inversos dels nombres triangulars encara és més difícil. Però no. La suma val exactament 2 i la demostració és relativament elemental.

Quan Gauss tenia 18 anys, va descobrir una interessant propietat dels nombres triangulars que va deixar anotada com: «ΕΎΡΗΚΑ! num = ∆ + ∆ + ∆», significa que cada nombre natural és suma de no més de tres nombres triangulars. ΕΎΡΗΚΑ! és EUREKA —ho he trobat— en caràcters grecs, tal com ho va escriure.

Si hi ha una operació inversa a elevar al quadrat, la que anomenem arrel quadrada, existeix l’arrel triangular?

No l’he vist mai anomenada així, però existeix i es calcula en termes d’arrel quadrada: (√(8n + 1) – 1) / 2. Així, l’arrel triangular de 120 seria (√(8·120 + 1) – 1) / 2 = (√961 – 1) / 2 = (31 – 1) / 2 = 15. Posem comprovar que el triangular de 15 val precisament 120: 15 × 16 / 2.

Un altre tema que relaciona quadrats amb triangular és cercar els nombres enters que siguin de les dues menes. N’hi ha infinits, la sèrie comença per 0, 1, 36, 1225, 41616, 1413721… com es veu creix molt ràpidament.

Trobar una fórmula explícita que ens doni aquests nombres no és fàcil, però sí que ho és una mica més trobar-ne una de recurrent, la que permet calcular un terme de la sèrie coneixent els dos anteriors, ho deixo com a problema.

Un tema que no he sabut trobar a internet és el de quines diferències hi pot haver entre un quadrat i un triangular. Acabem de veure que hi ha infinits casos on la diferència és zero. També hi ha casos amb diferències 1, 2, 3, 4, 5, 6 però curiosament mai 7. La seqüència de nombres que no són diferència entre un quadrat i un triangular continua amb: 7, 18, 23, 31, 37, 38, 40, 47, 52, 59, 67, 68, 70, 73, 83, 86, 88, 92, 98, 102… Com que aquesta no apareix a OEIS, em sembla que deu ser un tema poc estudiat o publicat. Malauradament conservo el full de resultats —de la dècada de 1980— però no els càlculs que vaig fer per obtenir-los. També podria ser que hagués comés alguna errada. Ho deixo per a qualsevol aficionat o professional que ho vulgui publicar, per exemple a OEIS.

49 és un nombre quadrat, 45 és triangular, la seva diferència és 4

 

Què és? Idiomes i nombres

Publicat el 20 de febrer de 2019 per Jordi Domènech i Arnau

No, no va de política, almenys directament, ja que intentar fer pensar en té moltes connotacions. Però avui va bàsicament d’idiomes, representats per una bandera i nombres enters.

Es podria fer per a moltes altres llengües, encara que en algunes no tindria massa sentit i en altres no hi hauria solució.

En tot cas, aquí el problema fa servir anglès, francès, castellà, italià, català i basc, essent l’ordre en el gràfic totalment irrellevant, em va venir bé així quan dibuixava el gràfic.

Com sovint, la pregunta és «Què és?»

 

«Què és?» Un de no deliberat

Publicat el 18 de febrer de 2019 per Jordi Domènech i Arnau

Aquest problema, me’l vaig trobar per casualitat. Va ser en un paper força brut i vell, de la dècada dels setanta, en una caixa de components electrònics. Era un full ple de nombre i parts d’esquemes de circuits senzills, bàsicament digitals. Altres fulls relacionats s’havien perdut.

La part del problema era un gràfic, fet a mà, que vaig trigar una mica en deduir què era. Només en aquest punt vaig recordar què estava fent. O sigui que en la resolució del petit enigma, no hi va intervenir de manera conscient la memòria. El gràfic, tornat a dibuixar a l’ordinador, que escanejat no es veia gaire bé, és aquest:

La gràfica del paper vell, més o menys reproduïda en més gran

Com sempre la pregunta és: «Què és?»

Idea feliç?

Publicat el 17 de febrer de 2019 per Jordi Domènech i Arnau

Normalment idea feliç és un terme pejoratiu, sempre dels problemes que sembla que només es poden resoldre amb una idea impossible de trobar deductivament o inductiva, una idea fruit de la casualitat.

No negaré que en alguns casos puguin ser difícils, però hi ha un tercer element que podem anomenar «cultural».

I això lliga amb el tema sobre qui ha de transmetre la cultura —universal, nacional o individual— als nostres nens. Quan hom assumeix que ha de ser la família, estam perpetuant les desigualtats; si no ho volem, no ens queda més remei que fer de l’ensenyament un transmissor de cultura en sentit ampli. Cosa, per cert, molt allunyada de les «indústries culturals» que només són una petita part de la Cultura amb majúscules.

Posaré ara un problema que molts m’han dit que és d’«idea feliç», però que recordo que el vaig solucionar a peu dret tot esperant que el semàfor dels vianants es posés verd. Segurament va ser una solució «cultural».

El problema diu: «Fes que amb una modificació mínima, la igualtat esdevingui correcta»

La fórmula me la van mostrar escrita a mà, i això té una certa importància. Fixeu-vos que aquí l’he escrit en forma de gràfic, escrita en text convencional potser no funcionaria, i això és força pista.

A partir d’aquí, la meva solució. O, més ben dit, el procediment que vaig pensar en aquell moment. Si voleu intentar resoldre el problema sols, no llegiu ara la part que segueix en rosa.

La primera idea que vaig pensar era posar una línia en diagonal sobre el signe igual de tal manera que es convertís en el signe de desigualtat «≠». Però això no solucionaria el problema que parla de fer una «igualtat» correcta. No, aquí cal que les quantitats a la dreta i l’esquerra del signe siguin iguals.

Comencem per l’esquerra: 71 + 1 són 72. 71 – 1 són 70. 72 × 70, és relativament fàcil fer-ho de memòria són 5040.

I aquí entra la cultura «numèrica». Hi ha nombres que molt probablement no ens diuen res, per exemple 142 a mi no em recorda res especial; però per exemple 144, sí: és una grossa una dotzena de dotzenes, o sigui 12 × 12; 1969 també em recorda instantàniament una cosa és l’any que l’home va trepitjar la Lluna i en el meu cas particular em recorda que és l’únic nombre amb dues vegades cada vocal: mil nou-cents seixanta-nou. Què m’evoca 5040? Si el cerquem a la Wikipedia —anglesa— ens sortiria immediatament la solució al problema. Però qui té una certa cultura numèrica ho té tan clar com el cas del 144: 5040 és el factorial de 7. Si multipliquem la seqüència dels enters ens resulta: 1, 2, 6, 24, 120, 720, 5040, 40320… i el factorial d’un nombre s’expressa amb un signe d’admiració. Set factorial s’escriu 7! i en el gràfic només cal afegir un punt sota el presumpte 1 de la dreta, tot convertint-lo en admiració. Per cert, 5040 també són els minuts de mitja setmana. I si voleu cultura clàssica, Plató, a la seva República, l’esmenta com a nombre desitjable de ciutadans d’una polis.

I si no tenim aquesta cultura? aleshores cal cercar les propietats del nombre i, naturalment, la manera més fàcil és consultant a internet, que això és un problema per fer a casa, no un examen. La dada, que 7! = 5040, potser cal recordar-la. per poc que fem càlculs acaba sortint alguna vegada.

Un text xifrat

Publicat el 12 de febrer de 2019 per Jordi Domènech i Arnau

Al menys des del segle I abans de Crist que es té constància de textos xifrats. En particular es coneix l’anomenat xifratge de Cèsar, que havia estat emprat per a missatges militars quan hi havia la possibilitat que el text anés a parar a l’enemic.

El xifratge de Cèsar és molt elemental, consisteix en substituir cada lletra per la que la segueix al cap d’un cert nombre de caràcters en ordre alfabètic, tornant a començar per la primera lletra en el cas d’haver arribat al final. És força fàcil de desxifrar, però tenint en compte que molts dels enemics de Cèsar no sabien llegir en llatí, era raonablement segur.

En poso un exemple:

N W Y N A X C N A J U U J M A N R W X D W Z D J U B N E X U N A J N U L J Y M N U J L X U U J V N B C N V D M J M N C X C J U J L X V J A L J N U B B N D B M N U R L C N B N A N W R W W X V K A J K U N B J V K E R X U N W L R J X J V K R W C N U U R P N W L R J N U L X V Y C N B J W J E J N W P A N R G J W C L J M J B N C V J W J L J B N B V J P J C I N V B C A J W B Y X A C B M N V N A L J M N A R N B E R J W J W C B C X C B N A N W N U B B N D B X K S N L C R D B W X N A J Y J B D W B N L A N C Z D R N A J N U L J Y M N U J L X U U J M N U B U U J M A N B Y N A X V J R U Q J E R N W Y X P D C N W G J V Y J A J E N P J M N B Y N A B X A C J U C A N B Y N A J B C D L R J Y N A X O X W J V N W C J U V N W C Y N A U J O N A A R J X A P J W R C I J L R X M N U B N D P A D Y R U J V N C R L D U X B R C J C R K X W J Y A N Y J A J L R X M N C X C B N U B L X Y B U J M R B L R Y U R W J V R U R C J A W X N A J A N B L X V Y J A J M J J V K U J D C X A R C J C Z D N C N W R J N W Y N A X C B X K A N U J B N E J P N W C R N U B R V Y X B J E J D W N B V N B D A N B M N B N P D A N C J C Z D N P J R A N K N C X C B L X W B R M N A J E N W N G J P N A J M N B J A J C N W R J D W W X D X K S N L C R D N U V N B P A J W M N C X C B U J L J B J M N U V J A Z D N B M N Y D R P M N U U X Y B N U Y N A B X W J C P N V N B A R L M N U J L X W C A J M J Q R Q J E R J N W C A J C M R B O A N B B J C M J S D M J W C M N Y J U N C J Z D J W U N B M J A A N A N B Y U D P N B E J W V J U V N C A N Y J A C M N U J C N D U J M J R Q X Q J E R J E R B C Z D J M A N B M N U B V N B R V Y X A C J W C B Y R W C X A B M N U Y J R B J A V N B J W C R P D N B X K S N L C N B A N U R P R X B X B J V K X A Y U J C J R Y N M A N A R N B Y X C B N A V R U E N P J M N B V N B E J U D X B Z D N N U M J A A N A K X C R N U L J A A N P J V N W C M X U R E N B M N V J B Y D S X U N C Z D N J V N B Q J E R J N B C J C O X A L J O N R G D L M N C A J W B Y X A C J A R M R O R L R U M N E N W M A N U D W R L J V N B D A J M N B N P D A N C J C N A J N U Y A X Y R L J B J U X C D W J N W X A V N K J U D N A W J L D K R L J J V K O R W N B C A N B A N R G J M N B R Y X A C N B O X A A N U U J M N B R J B X K A N J U V R P M N U J E R U J M J E J W C V J C N R G M N U J S D W C J V N W C B X U B N U L J A A N A X M N U J Y J A C Y X B C N A R X A N U Y J B M N U B P J C B N A J B X U R C J A R R B X U B Y N A J Z D N U U J K J W M J N W Y N A X C E J E N D A N D W Y D W C E D U W N A J K U N D W J O R W N B C A J B N W B N A N R G N B J U B N P X W Y R B N A J D W J M N U N B D U C R V N B V X M R O R L J L R X W B M N U N M R O R L R N B E J X K A R A N U O X A J C Z D J W N B E J L X W B C A D R A U J B J U J M N K J W H M N C X C N B V J W N A N B N A J V J B B J N U N E J C J V K U N B L J U J V N B J U C J N W L J A J V J W L J A R J D W K X W C A X B Y N A J A A R K J A Q R

Naturalment que està escrit una mica «a la romana» que no vol dir arrebossat amb farina, ou i posteriorment fregit, sinó tot en majúscules i sense espais ni diacrítics. Val a dir que els romans no empraven ni J ni U ni W que es van introduir el segle XV, com a formes de la I i la V,  però aquí he fet servir l’adaptació moderna del alfabet llatí de vint-i-sis lletres.

Recordo de preadolescent d’haver emprat i desxifrat codis d’aquesta mena. I també recordo d’haver-ne inventat un de molt més complicat que emprava dos colors diferents, no és que fos especialment pràctic d’escriure.

Però he reprès la idea dels dos colors, de manera molt diferent i amb ordinador per xifrar la continuació del text de més amunt. Bé, de fet empra tres colors. Però una vegada es veu la idea és molt fàcil de llegir. Com a pista, té una mica a veure amb un palimpsest.

Naturalment que no es tracta de recuperar tot el text, només de descobrir el mètode i aplicar-lo a les primeres paraules. Si l’he fet més extens és per facilitar la recerca.

Què és? Un exemple típic

Publicat el 11 de febrer de 2019 per Jordi Domènech i Arnau

Sovint se m’ha dit que els meus problemes —i específicament en la sèrie «Què és?» són massa difícils. I probablement és cert, però que això pugui semblar negatiu és fruit d’haver assumit un mètode pedagògic molt més basat en l’exercici que en el problema. Quan hom proposa als alumnes —i no vull dir específicament escolars— una sèrie d’exercicis, se suposa que l’objectiu és que gairebé tots els alumnes els solucionin tots. Cas contrari voldria dir que el procediment a aplicar en la solució no ha estat explicat, après o assumit pels alumnes.

Els problemes són diferents, d’entrada no sabem ni tan sols si tenen solució. O si aquesta serà trivial, de «feliç idea» o dependrà d’alguna mena de coneixement previ que es pot tenir o no.

Té sentit, doncs, proposar-los a qui potser no els podrà solucionar? No és molt frustrant això per l’alumne?

La clau de tot plegat és que els problemes no han d’anar sols, han de ser un conjunt i l’objectiu primari és solucionar-ne alguns. El secundari és aconseguir un efecte «eureka» —Què bo que sóc, em pensava que això no ho aconseguiria mai tot sol—. El terciari és més proper a l’efecte «merda!» —hauria d’haver descobert la solució tot sol, però realment l’he trobada d’una altra font— , però també és útil si és que realment s’ha treballat en el problema.

Avui presento un problema senzill, dels que anomeno «de peces», ja que es podria plantejar amb peces reals que sovint i malaurada, no tinc.

Què és?

Veiem un conjunt de peces de fusta disposades irregularment. Com deia abans, no tinc aquestes peces, són una imatge de síntesi: amb un programa vectorial vaig dibuixar totes les peces; a continuació hi vaig copiar al damunt una textura de fusta treta de la foto d’un moble de casa; les peces les vaig passar a un programa bitmap on les vaig girar i desordenar a l’atzar; i finalment vaig afegir-hi un fons i una mica d’ombra.

El primer pas per solucionar l’enigma és caracteritzar la imatge.

Hi ha peces repetides?
A primera vista no, potser valdria la pena començar a fer una cerca exhaustiva, però és una mica llarg i ho podem deixar per més endavant si ens cal.

Totes les peces tenen aproximadament la mateixa mida i tots els costats són ortogonals llevat d’un girat 45º, sempre de la mateixa mida. Ens podríem preguntar aquí, per exemple, si totes tenen el mateix perímetre, però no; en unitats arbitràries la peça de dalt a la dreta mesuraria 8 + √2 i la que té sota —de fet la majoria de les altres— 10 + √2. Pista falsa.

Són tots els costats ortogonals múltiples d’una dimensió mínima?
Aquí és fàcil veure que aproximadament sí. Hi ha costats de llargada 1, 2, 3, 4 i fins i tot en un cas —el de la peça de dalt a l’esquerra— 5. Continuem aleshores amb la hipòtesi que les dimensions són realment sempre nombres enters, múltiples d’un segment mínim que anomenem de mida 1; moltes peces tenen parts d’aquesta dimensió; i les que no —només n’hi ha dues, a dalt a la dreta i a dalt al mig— contenen un quadrat de 2 × 2.

Mirem ara la superfície. Cada peça conté un mig quadrat —unitari— tallat per la diagonal. I la resta? Si ens hi fixem una mica veurem que sempre hi ha quatre quadrats més, mai ni tres ni cinc. Aquest és el punt clau del problema.

Ara una lògica senzilla seria començar a generar figures formades per quatre quadrats i mig quadrat tallat per la diagonal. D’entrada sembla que qualsevol figura formada així apareix a la imatge. N’estem realment segurs del «qualsevol»?

Caldria comprovar-ho i per això no hi ha més remei que generar totes les figures que quatre quadrats i mig.

Un mètode podria ser el que vaig mostrar en aquesta entrada.

Però, com en tots els problemes inductius, n’hi ha més.

Un altre és veure que una figura formada per quatre quadrats i mig, és un pentòmino al que hem escapçat mig dels cinc quadrats. De pentòminos n’hi ha dotze:

Els dotze pentòminos i les lletres que convencionalment els designen.

I hem de mirar la manera d’eliminar mig quadrat de totes les maneres possibles en cadascun d’ells. Amb unes precaucions: el mig quadrat eliminat no pot dividir el pentòmino en dues parts i cal eliminar duplicats. Em primer lloc duplicats sobre la mateixa peça; en el cas dels pentòminos simètrics —I, T, U, V, W, X, Z— eliminar simètricament el mateix mig quadrat es proporcionaria la mateixa peça de quatre i mig, cal evitar-ho. La segona qüestió, que seria més difícil d’evitar, és veure si en treure el mig quadrat de dos pentòminos diferents podem obtenir la mateixa peça de quatre i mig. Afortunadament és impossible com podem veure raonant a la inversa: si a qualsevol peça de quatre i mig li afegim el mig quadrat per la diagonal, ens resulta un pentòmino concret, precisament els que els generaria la peça en escapçar-lo, aleshores és impossible obtenir el mateix «quatre i mig» escapçant dos pentòminos diferents.

Una vegada generades totes les peces que quatre quadrats i mig, cal fer la comprovació: són tots a la imatge?
I el resultat és que no, n’hi ha un que no hi surt, precisament el de baix a la dreta de la imatge solució.

Imatge solució

Difícil? Sota el meu parer no pas gaire. Segurament sí una mica treballós, però comparat amb fer exercicis és una feina molt més interessant. Això sí, cansada, ja se sap que pensar és, precisament, molt cansat. Sobre tot per a qui no hi està acostumat. Un corol·lari d’això és que, dins l’ensenyament, si es vol que els alumnes aprenguin a pensar —afegeixo «tot solets»—, cal que tinguin temps per fer-ho, sense que tot ple de feines normalment inútils els prenguin totes les hores que els caldria. Podeu mirar una mica la meva teoria al respecte.

Uns recorreguts de colors

Publicat el 9 de febrer de 2019 per Jordi Domènech i Arnau

No sempre puc fer el que voldria, en aquest cas voldria donar crèdit a l’autor del trencaclosques, però no recordo en absolut d’on el vaig treure, el tenia apuntat a mà en un full amb molts altres petits problemes, taules i esquemes alguns dels quals ara mateix no sabria identificar. O sigui que el problema no és meu.

El que sí que ho és, és el disseny. El vaig fer fa uns vuit anys a partir d’una foto d’un tauler de dames de 10 × 10 caselles que per l’altra banda ho és d’escacs de 8 × 8.

Foto feta al terra de l’habitació on ara mateix estic, amb el tauler damunt d’una caixa no identificada, suposo per tenir una il·luminació natural millor que a terra.

A continuació vaig tractar la foto a l’ordinador. El més essencial, pintar els peons per parelles de sis colors diferents. També netejar digitalment una mica el tauler que és vell i té taques i ratlles. Eliminar el fons, posar-n’hi un a partir d’una imatge sintètica i crear una mica d’ombra per tal que la imatge no quedi tan plana.

I ara ve el problema:

Cal connectar cada parell de peons del mateix color mitjançant un camí de caselles ortogonals, vull dir unides pel costat, com a pas de torre, no pas per l’angle. Per cada casella només hi pot passar un camí que, evidentment, no es pot creuar amb cap altre.

Com a pista que la solució és única i que els camins ocupen totes les caselles buides del tauler.

Per a la imatge de la solució, que ja la publicaré més endavant, vaig dibuixar els camins amb fitxes, del tipus de les fitxes del parxís, del mateix color que els peons que havien d’unir. De fet, quan vaig pintar els peons, va ser en funció dels colors dels quals tenia fitxes per tal de poder fotografiar la solució. Espero que morat, vermell, taronja i groc es distingeixin prou.

Naturalment que una cosa és l’estètica dels peons i les fitxes de colors, però el problema probablement es soluciona millor amb llapis i paper quadriculat. I goma, que segurament no sortirà a la primera.

La primera xifra de les illes

Publicat el 8 de febrer de 2019 per Jordi Domènech i Arnau

Potser per alguns és trivial, però per a altres és un petit misteri.

He agafat de la Viquipèdia una llista amb dades de les illes de la Mediterrània, de més de  cinc quilòmetres quadrats i he eliminat les despoblades, n’han restat 158. A continuació n’he fet una taula i m’he fixat en la primera xifra, tant de superfície com de la població. I n’he dibuixat una gràfica senzilla:

Com es pot veure, en ambdós casos, hi ha molts més valors que comencen per xifres petites que per les més grans.

La pregunta natural és perquè.

Com a pista podria dir que gràfiques similars haurien sortit si hagués buscat l’alçada màxima o la longitud de la costa.

Però el tema no va d’illes, també observem distribucions similars si fem l’estadística dels preus del supermercat, de la llargada dels rius d’un país o les cotitzacions de les accions de la borsa. Si la fem amb l’alçada d’un grup d’adults, la primera xifra seria aclaparadorament 1, ja que poques persones mesuren menys d’un metre o més de dos… és un dels casos on la gràfica no és d’aquesta mena, tampoc ho és la distribució dels nombres premiats a les loteries que és força uniforme si no hi ha trampa.

 

Salts de cavall

Publicat el 7 de febrer de 2019 per Jordi Domènech i Arnau

El cavall dels escacs és una peça amb unes regles de moviment diferents a les altres, no fa un recorregut per la «superfície» del taules on podria ser interceptada per una altra peça amiga o enemiga, sinó que «salta»: des de qualsevol casella pot anar a qualsevol de les vuit que hi ha a distància de dues unitats en un sentit i una en el perpendicular. Això és el màxim, si és prop de la vora del tauler, alguns salts el durien fora i no compten, és el cas de les quatre cantonades on un cavall només té dos moviments possibles.

Un aspecte bàsic del salt de cavall és que a cada passa canvia el color de la casella on va a parar. Conseqüència d’això és que per anar a una casella del mateix color, sempre li calen un nombre parell de jugades. Per exemple, amb dues jugades un cavall pot anar a qualsevol casella del mateix color situada a tres o menys caselles de distància en sentit horitzontal o vertical, llevat de les situades exactament a dues caselles de distància en diagonal que requereixen quatre salts. Això ho saben bé tots els jugadors d’escacs, desplaçar el cavall dues caselles en diagonal consumeix massa moviments i en molt pocs casos passa amb jugades consecutives en una partida real.

Un cas concret de moviment entre dues caselles del mateix color és anar de punta a punta d’una diagonal. Aquí el mínim és de sis salts. I la pregunta que faig és:
—Per quants recorreguts diferents es pot fer?

Un dels possibles recorreguts d’un cavall de punta a punta de la diagonal en 6 salts.
Tots els possibles recorreguts en sis salts superposats, és difícil comptar-los aquí.

Si el tauler no fos de 8 × 8 caselles, també ens podem plantejar la pregunta.

En un tauler de mida 1 × 1 la resposta és «degenerada» zero salts ens porten «de punta a punta» d’una sola manera possible. El cas de dimensió dos no té solució, en un tauler tan petit el cavall no es pot moure i no arribaria mai a l’altre extrem del tauler. El cas 3 és peculiar en un cert sentit, es precisen 4 salts i hi ha dos camins possibles simètrics depenent del primer salt.

Amb taulers més grans la cosa es posa més interessant, pel cas quatre la fàcil solució també són 2 possibles recorreguts; pel cas cinc 8 recorreguts; pel tauler de 6 × 6 en tenim 4; pel de 7 × 7 hi ha 6 solucions. Pel tauler normal de vuit caselles de mida, és la pregunta que he posat més amunt. Afegeixo que el cas 9 té 40 recorreguts i el cas 10 en té 20.

Tinc la seqüència ben determinada i la fórmula —de fet en són tres— que genera el nombre de solucions al problema. Com a prova puc posar aquí que per un tauler de 47 × 47 hi ha 225494871090 solucions i pel de 48 × 48 1591091500.

Naturalment que la primera gràcia del problema és inventar un mètode per comptar les solucions. La segona és molt més difícil, trobar les formules empíriques. La tercera, demostrar que són correctes. És un cas de mètode heurístic aplicat a una qüestió numèrica. Naturalment el problema es podria resoldre de manera totalment deductiva, però em temo que hauria sigut molt més difícil, crec sincerament que jo no ho hauria sabut fer.

Figures a partir d’un DIN A4

Publicat el 5 de febrer de 2019 per Jordi Domènech i Arnau

És ben conegut que qualsevol polígon, es pot dividir en un nombre finit de polígons que, disposats d’una altra manera, ens poden formar qualsevol altre polígon de la mateixa àrea que l’original.

En ocasions podem trobar figures reals basades en aquestes divisions. per exemple un conjunt de peces que es pot disposar, com a trencaclosques, en dues bases amb forma diferents. Aquí en poso un exemple, comprat al Museu de Matemàtiques de Catalunya (mmaca). Per una banda es poden col·locar les cinc peces format un triangle equilàter i, per l’altra, una estrella de sis puntes.

Hi ha molts altres exemples, especialment conegut és el de quatre peces que poden formar un triangle equilàter o un quadrat, que a vegades tenen les peces unides per unes frontisses als vèrtexs, com a la imatge que segueix:

Avui m’he fixat en una figura concreta, molt freqüent en la vida pràctica, però no gaire en matemàtiques, un rectangle DIN. Els fulls de paper estandarditzats venen amb unes mides concretes, per exemple un DIN A4 mesura 210 × 297 mm.

D’on surten aquests valors?
En primer lloc la proporció entre el costat llarg i el curt del full DIN és una aproximació a l’arrel quadrada de dos.
Per què?
Perquè és l’única que si dividim el full en dos per la meitat, ens en resulten dos més petits però amb les mateixes proporcions.
I la mida concreta? Es defineix DIN A0 com un full amb aquestes proporcions i amb una superfície d’un metre quadrat, el DIN A4 és la meitat, de la meitat de la meitat de la meitat, o sigui un setzè del DIN A0 o en altres paraules les seves dimensions lineals són la quarta part.
Les mesures «més exactes» serien: 210,22410381343… × 297,30177875068… amb més precisió que el diàmetre d’un àtom d’hidrogen.

Com qualsevol altre polígon, podem dividir un full DIN, en diverses parts mitjançant talls rectes, que unides ens formaran qualsevol altre forma.

N’he buscat uns quants exemples i n’he fet uns gràfics:

Un quadrat amb tres peces. Un rectangle auri —una targeta de crèdit— amb tres peces.

Un dòmino, dos quadrats, amb tres peces. Un triangle equilàter amb quatre peces.

Un pentàgon regular amb cinc peces. Un hexàgon regular amb cinc peces.

Un octògon regular amb quatre peces. Una creu llatina amb cinc peces.

Una estrella de cinc puntes amb set peces. Una estrella de sis puntes amb cinc peces.

Una estrella de vuit puntes amb cinc peces.

Tant l’octògon regular com l’estrella de vuit puntes es poden obtenir amb poques peces i formes molt simètriques, això es deu a que en les seves mesures, també n’hi ha que la proporció és arrel de dos, com en el cas dels fulls DIN.

Enrajolat Caire

Publicat el 3 de febrer de 2019 per Jordi Domènech i Arnau

El més freqüent dels enrajolats és el fet amb rajoles quadrades, el podem veure a les voreres de moltes ciutats i pobles, també a parets o fins i tot sostres. Menys freqüents són els enrajolats rectangulars, amb rectangles de diverses proporcions com per exemple 1:2 que és la normal a molts terrats del nostre país. Una tercera que també apareix sovint és la hexagonal, en algunes èpoques era freqüent en els banys i ara n’hi ha una coneguda com model Gaudí a les voreres del Passeig de Gràcia de Barcelona.

Molt menys normal en exteriors, però potser una mica més vistes en enrajolats d’edificis, hi ha els formats per peces de dues menes, com els de la imatge que segueix i que corresponen a un terra i a una paret de la casa on visc.

Un enrajolat semiregular format per quadrats i octògons regulars, i un altre format per quadrats de dues mides diferents.

Altres enrajolats amb peces idèntiques costen més de trobar i n’hi ha un que el conec per llibres de caire més aviat matemàtic, però que no l’he vist mai a la pràctica, tot i que el trobo força bonic. És l’enrajolat «Caire». S’anomena així perquè expliquen que és —o era— emprat en alguns carres de la ciutat del Caire.

És un enrajolat format per peces pentagonals. No són pentàgons regulars, que no hi ha manera que puguin cobrir el pla ja que caldria que diversos dels seus angles sumessin 360º per tal de poder tancar un vèrtex, i els angles d’un pentàgon regular mesuren 108º. Amb pentàgons irregulars iguals i convexos —o sigui sense angles interiors— es poden construir 15 menes diferents d’enrajolats del pla que siguin periòdics que vol dir que un motiu format per diverses peces es va repetint indefinidament sense variacions. Menes aquí vol dir topològicament iguals, que les peces tinguin una connexió determinada amb les veïnes, independentment de deformacions. El problema de robar tots els enrajolats per pentàgons convexes idèntics és molt difícil, el darrer tipus no va ser descobert fins 2015 i fins 2017 no es va provar que no n’hi havia més.

L’enrajolat Caire pertany a un dels 15 tipus i la manera més fàcil de construir-lo és a partir de l’enrajolat format per triangles equilàters i quadrats del mateix costat, de manera que a cada vèrtex i coincideixin, en ordre circular, un quadrat, un triangle, un quadrat i dos triangles:

Enrajolat semiregular, tots els vèrtexs són iguals i tots els polígons regulars

A partir d’aquest enrajolat podem construir el que s’anomena dual format uns nous polígons que tinguin com a vèrtexs els centres dels quadrats i dels triangles:

Les línies negres ens marquen les tessel·les de l’enrajolat Caire. Les podem pintar de quatre colors, de manera que dues peces del mateix color no es toquin, ni tan sols per un vèrtex:

O també el podem mostrar com la superposició de dos enrajolats hexagonals idèntics, en forma de rusc d’abella deformat, girats 90º l’un respecte l’altre:

L’enrajolat Caire com a superposició de dos enrajolats hexagonals

 

Dos problemes inductius

Publicat el 1 de febrer de 2019 per Jordi Domènech i Arnau

Els poliòminos, les figures formades per diversos quadrats iguals adjacents pels costats, permeten una gran varietat de problemes, molts d’ells inductius. Avui en presento dos relativament similars, que fan servir el joc dels 35 hexòminos.

És impossible col·locar els 35 hexòminos en un rectangle, però la demostració d’això, basada en la paritat és un tema que tocaré un altre dia. Però és possible col·locar-los en altres figures com per exemple un rectangle de 11 × 19 més una casella adjacent al mig del costat llarg. No és gaire fàcil fer-ho a mà amb un conjunt de les trenta-cinc peces, però amb un programa d’ordinador se’n poden treure milions de solucions, no l’he pogut deixar en marxa prou estona per saber el nombre.

Pels problemes d’avui parteixo de dues solucions d’aquest cas, però simplement com a il·lustració per mostrar les trenta cinc peces. La seva posició o orientació no hi té cap importància.

Els dos problemes són part d’una col·lecció de 12. Segurament seria exagerat posar-los tots aquí, però a l’hora de solucionar problemes d’aquesta mena, quants més n’hi ha, més possibilitats de solucionar-ne algun…

En el primer cas veiem els hexòminos pintats de dues maneres, uns de color rosa, i els altres verds.

Trenta-cinc hexòminos: 12 roses i 23 verds.

La pregunta és quin és el criteri.

Òbviament hi ha moltíssims possibles criteris per acolorir els hexòminos en diversos colors, aquesta és la gràcia i la dificultat dels problemes inductius. Fins i tot, algunes vegades passa que dos criteris que no tenen res o gaire a veure, ens porten al mateix acoloriment. Això vol dir que la solució a un problema inductiu sempre és probabilística, cal escollir el criteri subjectivament més senzill, és el que s’anomena navalla d’Occam.

En una entrada no fa gaire, en un problema també amb hexòminos, vam veure un criteri que era si la figura era el desenvolupament d’un cub o no. El criteri d’avui és subjectivament més senzill. Altres criteris a considerar poden ser: dimensions màximes, nombre de costats, nombre de costats d’una determinada mida, angles interns, enrajolats per peces més petites, mida màxima de una diagonal, caselles blanques s o negres sobre un tauler d’escacs, diàmetre màxim de la peça… Aquest problema té a veure amb algun d’aquests criteris.

Però potser una pista tangible i misteriosa sigui la primera que hi vaig veure: la dels «cucs». Un poliòmino pertany a la categoria dels cucs, si és possible fer per tot ell un recorregut quadrat a quadrat, pel costat, de manera que no es repeteixi cap casella. I la observació és que tots els cucs són verds i no hi ha cap hexòmino rosa que ho sigui. De totes maneres aquest no és el criteri perquè hi ha cinc hexòminos pintats de verd que no són cucs, per exemple el que sobresurt per la part superior.

Aquestes cinc peces són les que ens donen una pista definitiva si ens adonem que en totes elles hi ha un quadrat amb tres costats exteriors, que si comencem el camí de «cuc» per ell al següent pas ens trobem que hi hauria dues possibilitats de continuar de la mateixa mida, dues caselles. En els cucs normals, després de dues caselles, en podem fer dues més i dues més. En canvi en cap de les peces roses, en entrar des d’una punta i seguir una casella més, no trobem mai dues possibles continuacions de dues caselles. Aquest és la pista definitiva, en les peces verdes sempre podem fer dues dues i dues caselles per cobrir-les, en altre paraules, es poden recobrir amb tres dòminos i les roses, no.

En aquesta figura podem veure que les peces verdes es poden cobrir per tres dòminos.

En el següent problema, del qual avui no donaré més pistes llevat que el criteri té alguna semblança amb l’anterior, podem veure els hexòminos pintats de cinc colors.

Trenta-cinc hexòminos: 2 carabasses, 12 roses, 11 verds, 6 grocs i 4 blaus.

La pregunta torna a ser quin és el criteri.

Un joc força senzill

Publicat el 31 de gener de 2019 per Jordi Domènech i Arnau

Hi ha jocs com els escacs o el go, de regles relativament senzilles però d’anàlisi extremadament complex. Altres són més fàcils, potser fins arribar a l’extrem del tres en ratlla o per pura observació d”unes quantes partides és possible de manera gairebé intuïtiva trobar l’estratègia òptima.

Vull presentar aquí un altre joc també amb les regles molt senzilles, inventat a principis del segle XX per un matemàtic neerlandès, amb un anàlisi no tan senzill, però fàcilment abastable.

El material del joc són dos munts de fitxes, palets, mongetes o qualsevol objecte fàcilment comptable. S’enfronten dos jugadors per torns i a cada jugada poden enretirar el nombre d’objectes que vulguin de qualsevol dels dos munts, o la mateixa quantitat de tots dos.

Guanya qui s’enduu el darrer objecte.

Naturalment, si en començar els dos munts tinguessin la mateixa quantitat, el primer jugador guanyaria enretirant aquesta quantitat dels dos munts, cal començar doncs amb munts diferents, i cal posar-se d’acord en el sistema.

L’anàlisi bàsic per a petites quantitats és senzill, però el podem visualitzar molt més fàcilment si canviem el joc per un d’equivalent en un altre format.

En lloc de considerar les dues quantitats de peces dels munts, pensem en una fitxa col·locada en una casella d’un tauler quadriculat de mida arbitràriament gran. A partir de l’angle inferior esquerra numerem files i columnes començant per zero. La fitxa en una casella la podem assimilar a les seves coordinades, els nombres de la fila i la columna on rau. Aleshores, treure fitxes d’un munt equival a desplaçar la peça, com una torre, cap avall o a l’esquerra, i treure la mateixa quantitat de fitxes dels dos muts a desplaçar la peça en diagonal, com un alfil, cap avall i l’esquerra. L’objectiu del joc és ara arribar a la casella inferior esquerra, la que tindria les coordinades (0, 0).

Versió del joc en un tauler, els tres primers passos de la solució.

Aquesta casella és guanyadora si un jugador hi porta la peça, i la pintem en taronja al diagrama de l’esquerra. Totes les caselles pintades en blau, permeten al jugador que té el torn arribar a la casella guanyadora. En conseqüència, l’altra jugador ha d’evitar col·locar la peça en qualsevol casella blava, i sempre ho pot fer llevat que estigui en qualsevol de les dues caselles marcades en taronja, (2, 1) i (1, 2) des d’elles no hi ha cap moviment bo, o sigui que són perdedores pel jugador que té el torn (i guanyadores per l’altre).

Passem al segon diagrama on també s’han pintat de blau totes les caselles que ens porten a la sortida o a les anteriors vistes com a perdedores. Ara podem veure que les caselles (5, 3) i (3, 5) també són perdedores, des d’elles només es pot anar a una casella blava que asseguraria la victòria a l’altre jugador. Repetint el procediment de pintar de blau les caselles que ens poden conduir a les darreres perdedores, podem veure que (7, 4) i (4, 7) també ho són, des d’elles només es pot moure a caselles blaves. Sempre són perdedores les caselles més properes a l’angle inferior esquerra que no estiguin pintades de blau.

Amb un tauler més gran veuríem que les caselles crítiques són les de coordinades: (2, 1), (5, 3), (7, 4), (10, 6), (13, 8), (15, 9), (18, 11), (20, 12), (23, 14), (26, 16), (28, 17), (31, 19), (34, 21)… o les mateixes invertides: (1, 2), (3, 5), (4, 7)…

Per posar un exemple, si ens toca jugar i als munts hi ha 9 i 5 fitxes —o jugant amb el sistema del taulell la fitxa és a (9, 5)— la jugada bona és prendre sis fitxes del munt de nou per deixar 3 i 5 fitxes que és una posició perdedora per a l’altre jugador. En el tauler podem veure que des de qualsevol casella blava, sempre hi ha un moviment a l’esquerra, avall o en diagonal avall a l’esquerra, que ens duu a una casella dolenta per a l’altra jugador. I, recíprocament, des d’una casella taronja només ens podríem moure a una casella blava.

Si els munts continguessin 12 i 15 fitxes, una jugada bona seria enretirar-ne vuit de cada munt per passar a 4 i 7 que és una posició perdedora per a l’altre jugador. O treure’n tres del munt de dotze fitxes, que ens portaria a 9 i 15 que també és perdedora per a l’altre.

El problema que plantejo és trobar quines son les caselles crítiques, quina lògica hi ha en la sèrie de parelles de nombres.

Subsidiàriament, trobar com es deia el matemàtic que va publicar el joc per primera vegada i amb quin nom és coneix.

Nombres i lletres, com el títol del bloc

Publicat el 23 de gener de 2019 per Jordi Domènech i Arnau

Cada idioma té la seva manera de fer, per exemple en la manera de dir els nombres, en anglès puc fer la sèrie: 1000, 1000000000, 1000000000000000000000000000, 100, 1… i demanar el següent terme.

En català, la cosa seria una mica diferent, i el següent terme, en el nostre cas, no existeix. La sèrie quedaria en: 4, 1000000000000, 5, 2, 3…

Passem les sèries expressades en xifres a lletres. L’anglesa queda: (one) thousand, billion, octillion, hundred, one… podem prescindir del one davant dels grans nombres, no afecta el nostre problema.

En català la sèrie en lletres és: quatre, un bilió, cinc, dos, tres…

Si decidim posar infinit ∞ pels termes no existents la sèrie anglesa quedaria:

1000, 1000000000, 1000000000000000000000000000, 100, 1, X, 8, 3, 5, ∞, ∞, 11, 1000000, 1, 1, 1000000000000000000000000, 1000000000000000, 3, 6, 2, 4, 5, 2, 6, 20, ∞. El terme X és la incògnita del problema inicial que en realitat era, no amb els nombres, sinó amb els seus logaritmes decimals: 3, 9, 27, 2, 0…

En català —central— la sèrie completa és:

4, 1000000000000, 5, 2, 3, ∞, ∞, ∞, 5, ∞, ∞, 1000, 1000, 1, 2, 1000000000000000000000000000000000000000000, 4, 3, 2, 3, 1, 8, ∞, 60, ∞, 11.

Nombres i lletres en català i en anglès

Val a dir que si admetem la forma googol pel nombre format per un 1 i cent zeros, la sèrie catalana canviaria lleugerament, i que si emprem la varietat valenciana, també.

Una pista, les dues sèries tenen vint-i-sis termes.

Arrel cúbica

Publicat el 19 de gener de 2019 per Jordi Domènech i Arnau

Tinc aquí a la taula un llibre de l’any 1934 de l’editorial «Dalmáu Carles Pla», en castellà, anomenat «Enciclopedia cíclico pedagógica», aproximadament anava destinada a nens del que ara seria entre cinquè i sisè de primària.

Només m’he aturat a analitzar el que era la matèria de matemàtiques. Se suposa que la més invariable de totes ja que en aquest nivell, tot el que s‘ensenyava i ensenya als nens són coneixements perfectament consolidats i pràcticament invariables en els darrers cent anys. Invariables vol dir que la divisió continua essent divisió, i un triangle un triangle, amb les mateixes propietats, però la manera d’explicar-les ha canviat força… en alguns aspectes.

El que més em crida l’atenció és que, sense introduir res d’àlgebra, von ensenyar una munió de regles sense justificar-les per a solucionar problemes diversos, que d’altra banda són trivials amb àlgebra. No és a quina edat s’hauria d’introduir, però el que és evident és el difícil que era fer-ho sense introduir-la, ni que fos a nivell bàsic d’equacions de primer grau.

Una segona cosa curiosa, vist des d’ara, és una mena d’al·lèrgia a generalitzar, les regles s’ensenyen per a cada cas particular, no com a diversos aspectes d’una regla general.

I el cas que vull posar com a exemple és el de l’arrel cúbica.

Efectivament, si tenim una peça cúbica de, posem-hi, 2,5 m³ i ens pregunten quan mesura, la solució és l’arrel cúbica de 2,5, que feta amb qualsevol calculadora científica, resulta 1,35720880829745 metres. Clar que el 1934 no hi havia calculadores científiques. Però tampoc el problema de l’exemple és dels que se’ls presenta gaire a la gent normal, fins i tot tècnics o enginyers molt rarament han de fer una arrel cúbica, al menys amb més precisió que la que dóna un regle de càlcul, que també en sap fer.

El cas és que en aquella època s’ensenyava als nens, que ja havien après a fer arrels quadrades a mà el curs anterior, a fer arrels cúbiques. A mi ja no em va tocar. Però rar que sóc en vaig aprendre per pura afició, si no amb aquest llibre, amb algun altre similar que vaig arreplegar. El perquè funciona el regle, o fins i tot el de l’arrel quadrada, ni llibres ni professors m’ho van ensenyar mai. Quan al final ho vaig veure, realment em va ser molt útil la comprensió d’aquests algorismes per a altres tasques futures, però va ser un aprenentatge purament autodidacta. Val a dir que la regla per fer amb paper i llapis l’arrel cúbica, és força enrevessada i que tot i que encara la recordo, em sembla que mai no he tingut necessitat real d’emprar-la. Pensar en un nen havent-la de fer sense comprendre res, fa una certa pena.

Muntatge de les pàgines del llibre o s’explica com fer una arrel cúbica, amb un exemple.

Però no era la regla i prou, era una regla per a «enters menors que 1000», una altre per a «enters majors que 1000», un altre apartat sobre com fer-la a un nombre decimal i, finalment la regla per fer-la a trencats, que és com es denominava sistemàticament les fraccions.

Part d’un altre exemple d’arrel cúbica.

També crida l’atenció el següent capítol del llibre, literalment: «Raíces de grado superior al tercero. Números primos». Què hi tenen a veure els dos conceptes per a posar-los al mateix capítol? però el més curiós del cas, en la primera part és l’aversió a regles generals, hi surt, en aquest ordre, com fer l’arrel quarta, la vuitena, la setzena, la novena, la vint-i-setena, la sisena i la dotzena.

Em millorat des de 1934?

Indubtablement, però només una mica, alguns dels defectes tan evidents d’aquell llibre continue vigents tot i que més dissimulats.

I penso en primer lloc en posar per davant la recepta a la comprensió del que s’està fent. Amb l’agreujant que com que la memorística està desacreditada, es fa veure que no n’hi ha, mentre els nostres alumnes continuen memoritzant receptes —ja no són llistes o definicions literals— com abans.

No, el pas per fer veure al nen que el que se li ensenya és útil i ho pot integrar en els seus coneixements, normalment encara no es fa, com a molt s’arriba a presentar-li una sèrie d’exemples que l’alumne aprèn per si «van a examen», sense verificar que hagi passat de l’exemple a la generalització. Vull dir que l’examen això no ho detecta.