Educació, tasques sistemàtiques amb un trencaclosques

Sovint em diuen que molts dels problemes heurístics que elaboro, són massa difícils, que ningú no ha explicat als seus receptors com es resolen.

Evidentment, si l’objectiu d’un d’aquests problemes és precisament trobar, via assaig i error, un procediment raonable per resoldre’l no és pot explicar el sistema precís, el problema s’hauria convertit en un exercici que és precisament el que vull evitar.

Però a vegades, fins i tot explicat o esbossat el procediment, resta encara una mica de problema, en el sentit de trobar com completar tot el procediment evitat errades, per exemple omissions o duplicacions.

També em diuen que sempre els faig sobre temes similars i és en part cert i en part fals. Cert en el sentit que sovint treballo amb peces com les polifigures, com aquí, els nombres o la lògica, però fals en que no són temes exclusius, a vegades, per exemple empro fotografies o mapes com a base pels problemes. Que no faig servir la literatura? Per dos motius: segurament no en sé prou i tampoc no puc pensar que els destinataris dels problemes tinguin fàcilment prou dades a l’abast per poder resoldre problemes «literaris» amb una certa complexitat. Hi ha també els problemes lèxics, que en general no practico, però estan normalment adreçats a ampliar els coneixements de llengua, no al meu objectiu primari que són les tècniques de pensament i resolució.

Avui seguint amb els temes en que em trobo més còmode, plantejo un problema amb figures geomètriques elementals, quadrats i mitjos quadrats per la diagonal.

Partim de la figura de color rosa formada per un quadrat i mig quadrat tallat per la diagonal, en rosa, que apareix quatre vegades a l’esquerra de la il·lustració. És l’única figura possible amb aquestes dues formes contigües amb els costats «ajustats» que vol dir que un costat ha de coincidir exactament amb un altre costat igual de llarg. Aquesta figura té una àrea de 1,5. Aquí cal dir que considerem una figura igual a la seva imatge especular, si la tenim feta sòlida, la podem tombar cap per avall i continuarà sent la mateixa.

Afegint dos quadrats a la peça rosa de totes les maners possibles, generem 14 figures formades per tres quadrats i mig.

Ara, a aquesta figura d’àrea 1,5 li afegim un altre quadrat igual al primer de manera ajustada, de manera que formem una figura de 2,5. Això ho podem fer de quatre maneres diferents. que ens generen les quatre figures de color verd de la il·lustració, marcades amb les lletres a, b, c i d. Fixem-nos que la d és l’única que té un eix de simetria, concretament inclinat 45º.

Si continuem el procés d’afegir un quadrat, obtindrem figures amb una superfície de 3,5. Però aquí cal ser una mica més curós ja que, a banda de no ometre cap possibilitat, ens podem trobar amb figures duplicades.

Podem veure a la dreta de les quatre figures verdes, duplicats d’ella en taronja amb l’afegitó del quadrat blau en totes les posicions possibles. Cada forma està anomenada amb una lletra que correspon a la figura de 2,5 amb un número que indica cada posició.

Una vegada formades totes les figures possibles, cal veure si hi ha algun duplicat. Efectivament, ens en trobem alguns casos que els he marcat amb la vora vermella. Ens resten catorze figures diferents amb la vora negra, que són totes les possibilitats amb àrea 3,5 dins la lògica d’aquest problema. Aquí també podem veure que la figura c5 és l’única amb un eix de simetria, també inclinat 45º.

Fins aquí, relativament fàcil. El que és una mica més complicat, és generar totes les figures d’àrea 4,5 o 5,5 amb la mateixa tècnica o alguna altra que pugui ser més efectiva.Com a pista per a comprovar si s’ha fet bé la feina puc dir que de quatre quadrats i mig n’hi ha 54 i de cinc quadrats i mig 209.

Amb les catorze figures de 3,5, que naturalment cobreixen una àrea total de 14 × 3,5 = 49, es pot formar un quadrat. De moltes maneres diferents. Un càlcul aproximat em diu que d’unes 18000 formes diferents. No he vist mai el trencaclosques comercialitzat, potser perquè malgrat les moltes solucions és bastant difícil. La imatge és una vil falsificació fotogràfica del que voldria tenir.

Imatge a partir d’un joc infantil, les vores entre les tessel·les han estat eliminades amb l’ordinador, i els colors modificats per tal de tenir-ne 14 de diferents.

Sempre he pensat que aquest trencaclosques podria ser una decoració fàcil per el terra d’una plaça que es podria denominar oficialment o popular, la Plaça del Trencaclosques. I podria atreure turistes aficionats a questes coses… A veure si algun ajuntament es decideix, que la idea és de franc i el disseny està amb llicència lliure (cc, by, sa). Ep, i tinc més dissenys per l’estil, en dues dimensions per a terres o parets o en tres per a monuments variats.

En el camp educatiu, més enllà de generar les peces de manera sistemàtica, en principi amb paper quadriculat i llapis, hi pot haver la tasca de construir realment el trencaclosques, cosa que vol dir prendre decisions de compromís entre la facilitat i el ben acabat i utilitzable que quedi. Fer-ho amb paper, és molt fàcil, però el resultat és difícil de manipular i en respirar les peces poden volar. Fer-ho amb fusta, metall o plàstic… és més feina.

Aquesta entrada ha esta publicada en Ciència i pensament, Divulgació, Educació, Problemes. Afegeix a les adreces d'interès l'enllaç permanent.

Deixa un comentari

L'adreça electrònica no es publicarà. Els camps necessaris estan marcats amb *

*