Pols d'estels

El bloc d'Enric Marco

El Nobel de Medicina pel descobriment dels mecanismes moleculars que controlen el rellotge biològic

Fa uns dies l’Institut Karolinska, a Estocolm, anuncià la concessió del premi Nobel de Medicina 2017 a Jeffrey C. Hall, Michael Rosbash i Michael W. Young “pels seus descobriments dels mecanismes moleculars que controlen el ritme circadià.

És a dir, ells van ser els pioners en estudiar i comprendre com les nostres cèl·lules ajusten el seu ritme vital amb la cadència natural dia/nit, fet decisiu per entendre com la contaminació lumínica és un potent pertorbador d’aquest ritme i, possible causant d’efectes sobre la salut.

Com expressa el comunicat de premsa del Comitè Nobel:

El rellotge biològic està involucrat en molts aspectes de la nostra fisiologia complexa. Ara sabem que tots els organismes multicel·lulars, inclosos els humans, utilitzen un mecanisme similar per controlar els ritmes circadians. Una gran proporció dels nostres gens està regulada pel rellotge biològic i, per tant, un ritme circadià acuradament calibrat adapta la nostra fisiologia a les diferents fases del dia. Des dels descobriments pioners dels tres guardonats, la biologia circadiana s’ha convertit en un camp de recerca molt dinàmic i amb implicacions per a la nostra salut i benestar.

Pel seu interès us reproduesc en català la nota de premsa del Comité Nobel:


Sumari

La vida a la Terra s’adapta a la rotació del nostre planeta. Durant molts anys hem sabut que els organismes vius, inclosos els humans, tenen un rellotge intern i biològic que els ajuda a anticipar-se i adaptar-se al ritme habitual del dia. Però, com funciona aquest rellotge? Jeffrey C. Hall, Michael Rosbash i Michael W. Young van poder mirar dins del nostre rellotge biològic i dilucidar el seu funcionament intern. Els seus descobriments expliquen com les plantes, els animals i els humans adapten el seu ritme biològic de forma que es sincronitze amb les revolucions de la Terra.

Amb la mosca del vinagre (Drosophila melanogaster) com a model d’organisme, els premiats Nobel d’aquest any van aïllar un gen que controla el ritme biològic normal del dia. Van demostrar que aquest gen codifica una proteïna que s’acumula a la cèl·lula durant la nit i que es degradarà durant el dia. Posteriorment, van identificar components de proteïnes addicionals d’aquesta maquinària, exposant el mecanisme que regeix el rellotge auto-sostingut dins de la cèl·lula. Ara reconeixem que els rellotges biològics funcionen amb els mateixos principis en cèl·lules d’altres organismes multicel·lulars, inclosos els humans.

Amb precisió exquisida, el nostre rellotge interior adapta la nostra fisiologia a les radicalment diferents fases del dia. El rellotge regula funcions crítiques com ara el comportament, els nivells hormonals, la son, la temperatura corporal i el metabolisme. El nostre benestar es veu afectat quan hi ha un desajust temporal entre el nostre entorn extern i aquest rellotge biològic intern, per exemple quan viatgem per diferents zones horàries i experimentem “jet lag”. També hi ha indicis que els desajustos crònics entre el nostre estil de vida i el ritme dictat pel nostre cronometrador intern s’associen amb un major risc de diverses malalties.

El nostre rellotge interior

La majoria dels organismes vius anticipen i s’adapten als canvis diaris en el medi ambient. Durant el segle XVIII, l’astrònom Jean Jacques d’Ortous de Mairan va estudiar plantes mimoses, i va trobar que les fulles s’obren cap al sol durant el dia i es tanquen al vespre. Es va preguntar què passaria si la planta es col·loqués en una foscor constant. Va descobrir que sense de la llum solar diària, les fulles continuaven seguint la seua oscil·lació diària normal (Figura 1). Les plantes semblaven tenir el seu propi rellotge biològic.

Altres investigadors van trobar que no només les plantes, sinó també animals i humans, disposen d’un rellotge biològic que ajuda a preparar la nostra fisiologia per les fluctuacions del dia. Aquesta adaptació habitual es coneix com a ritme circadià, provinent de les paraules llatines circa que significa “al voltant” i  dies segons el significat “dia”. Però la manera com el nostre rellotge biològic circadià funcionava era un misteri.

Figura 1. Un rellotge biològic intern. Les fulles de la planta de mimosa s’obren cap al sol durant el dia, però tanquen prop del capvespre (part superior). Jean Jacques d’Ortous de Mairan va col·locar la planta en una foscor constant (part inferior) i va trobar que les fulles seguien el seu ritme diari normal, fins i tot sense fluctuacions diàries.

Identificació d’un gen rellotge

Durant la dècada de 1970, Seymour Benzer i el seu estudiant Ronald Konopka es van preguntar si seria possible identificar els gens que controlen el ritme circadià en les mosques del vinagre. Van demostrar que les mutacions en un gen desconegut alteren el rellotge circadià de les mosques. Van nomenar aquest gen period. Però, com podria aquest gen influir en el ritme circadià?

Els premiats Nobel d’aquest any, que també estudien les mosques del vinagre, van intentar descobrir com funciona el rellotge. El 1984, Jeffrey Hall i Michael Rosbash, treballant en estreta col·laboració a la Universitat Brandeis de Boston, i Michael Young a la Universitat Rockefeller de Nova York, van aconseguir aïllar el gen period. Jeffrey Hall i Michael Rosbash després van descobrir que PER, la proteïna codificada per period, s’acumulava durant la nit i es degradava durant el dia. Per tant, els nivells de proteïna PER oscil·len durant un cicle de 24 hores, en sincronia amb el ritme circadià.

Mecanisme de mecanisme d’auto-regulació

El següent objectiu clau era comprendre com es podrien generar i mantenir aquestes oscil·lacions circadianes. Jeffrey Hall i Michael Rosbash van plantejar la hipòtesi que la proteïna PER bloquejava l’activitat del gen period. Van raonar que per un bucle de retroalimentació inhibidora, la proteïna PER podria prevenir la seua pròpia síntesi i, per tant, regular el seu propi nivell en un ritme continu i cíclic (Figura 2A).

Figura 2A. Una il·lustració simplificada de la regulació retroalimentada del gen period. La figura mostra la seqüència d’esdeveniments durant una oscil·lació de 24 hores. Quan el gen period està actiu, es produeix ARNm period. L’ARNm es transporta al citoplasma de la cèl·lula i serveix de plantilla per a la producció de proteïna PER. La proteïna PER s’acumula en el nucli de la cèl·lula, on es bloqueja l’activitat del gen period. Això dóna lloc al mecanisme inhibidor de retroalimentació que subjau en un ritme circadià.

El model era temptador, però faltaven algunes peces del trencaclosques. Per bloquejar l’activitat del gen period, la proteïna PER, que es produeix en el citoplasma, hauria d’arribar al nucli cel·lular on es troba el material genètic. Jeffrey Hall i Michael Rosbash havien demostrat que la proteïna PER es reforça en el nucli durant la nit, però com va arribar fins allà? El 1994, Michael Young va descobrir un segon gen rellotge, timeless, que codifica la proteïna TIM que es requeria per a un ritme circadiari normal. En un treball elegant, va demostrar que quan TIM s’uneix a PER, les dues proteïnes són capaces d’ingressar al nucli cel·lular on bloquegen l’activitat del gen period per tancar el bucle de retro-alimentació inhibidoria (Figura 2B).

Figura 2B. Una il·lustració simplificada dels components moleculars del rellotge circadià.

Aquest mecanisme de retroalimentació reguladora explicava com va sorgir aquesta oscil·lació dels nivells de proteïnes cel·lulars, però les preguntes van romandre. Què controlava la freqüència de les oscil·lacions? Michael Young va identificar un altre gen, doubletime, que codificava la proteïna DBT que retardava l’acumulació de la proteïna PER. Això proporcionava informació sobre com s’ajusta una oscil·lació per aproximar-se més a un cicle de 24 hores.

El paradigma de canvi descobert pels guardonats van establir principis mecanícistes clau per al rellotge biològic. Durant els  anys següents es van esbrinar altres components moleculars del mecanisme del rellotge, explicant la seua estabilitat i funció. Per exemple, els guardonats d’aquest any van identificar proteïnes addicionals necessàries per a l’activació del gen period, així com per al mecanisme pel qual la llum pot sincronitzar el rellotge.

Mantenir el temps en la nostra fisiologia humana

El rellotge biològic està involucrat en molts aspectes de la nostra fisiologia complexa. Ara sabem que tots els organismes multicel·lulars, inclosos els humans, utilitzen un mecanisme similar per controlar els ritmes circadians. Una gran proporció dels nostres gens està regulada pel rellotge biològic i, per tant, un ritme circadià acuradament calibrat adapta la nostra fisiologia a les diferents fases del dia (Figura 3). Des dels descobriments pioners dels tres guardonats, la biologia circadiana s’ha convertit en un camp de recerca molt dinàmic i amb implicacions per a la nostra salut i benestar.


Figura 3. El rellotge circadià anticipa i adapta la nostra fisiologia a les diferents fases del dia. El nostre rellotge biològic ajuda a regular els patrons de son, el comportament de l’alimentació, l’alliberament hormonal, la pressió arterial i la temperatura corporal.

Bibliografia:

1 The 2017 Nobel Prize in Physiology or Medicine – Press Release. (n.d.). Retrieved October 02, 2017,  https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/press.html

2 Nobel Prize Awarded for Discovery of Molecular Mechanisms Controlling the Circadian Rhythm, http://www.darksky.org/nobel-prize-awarded-for-discovery-of-molecular-mechanisms-controlling-the-circadian-rhythm/

Imatges: Del Comité Nobel, 2017.



Deixa un comentari

L'adreça electrònica no es publicarà. Els camps necessaris estan marcats amb *

Aquest lloc està protegit per reCAPTCHA i s’apliquen la política de privadesa i les condicions del servei de Google.

Aquesta entrada s'ha publicat dins de Cel fosc | s'ha etiquetat en , , , per Enric Marco | Deixa un comentari. Afegeix a les adreces d'interès l'enllaç permanent