A Ciencia Cierta. El Sol: Una biografia de la nostra estrella

En clau de tertúlia parlem de les estrelles. Com es formen?, quina és la seua evolució?, com moren? Ens centrem també en les principals característiques de la nostra estrella, el Sol, amb especial atenció a les taques solars i les tempestes solars, i les repercussions que poden tenir aquestes últimes en la societat. Tot això de la mà de David Ibáñez, Fernando Ballesteros i Enric Marco.

Tertúlia científica en castellà de la ràdio CVRadio 94.5. 31 de gener 2019.

Per Player.fm

A Ciencia Cierta 31/1/2019 El Sol: Una Biografía de nuestra Estrella

Per ivoox

 

Wolfgang Mattig ens ha deixat

Wolfgang Mattig, astrònom alemany especialitzat en física del Sol, ens va deixar fa uns dies a Viena. M’he assabentat avui mateix. Amb 91 anys ja feia temps que vivia tranquil·lament la seua jubilació. Va ser el meu director de tesi i, segurament, jo vaig ser el seu darrer doctorant.

Mattig, com el solia anomenar tothom (no els estudiants, off course) fa fer una carrera singular. Començà com cosmòleg teòric al Astrophysikalischen Observatoriums Potsdam des d’on publicà l’article en el que s’introduïa la coneguda fòrmula de Mattig, important en cosmologia observacional i astronomia extragalàctica ja que dóna una relació senzilla entre la coordenada radial i el canvi de corriment al roig d’una determinada font. Encara que ja no és aplicable en els models cosmològics actuals, ja que no té en compte l’energia fosca, va ser l’equació més útil de la cosmologia de finals del segle XX.

Però la vida a l’Alemanya Oriental no era massa còmoda i abans de l’aixecament del mur de Berlín, passà a Occident, com ho feren nombrosos científics i persones de professions qualificades.

Recalà llavors al Kiepenheuer-Institut für Sonnenphysik
(KIS) a Freiburg, al sud d’Alemanya, l’any 1961 i allí s’hi va quedar fins a la jubilació.

Al KIS es dedicà sobre tot a la física solar observacional. Els anys seixanta i setanta les observacions es feien a l’observatori solar situat a l’illa de Capri. Però a partir dels 70 el KIS buscà un lloc més adient i, ja des dels anys 80, Mattig observà amb els telescopis solars alemanys situats a l’Observatori del Teide. Tanmateix també es desplaçà a altres observatoris d’arreu del món, com per exemple a Sacramento Peak, New Mexico. El seu treball de recerca es va centrar en l’activitat magnètica del Sol, sobre tot de les zones actives solars.

I des de l’Instituto de Astrofísica de Canarias i amb una beca alemanya, vaig aparéixer jo al KIS a finals dels anys 80 per començar un projecte de tesi sobre fenòmens magnètics a les taques solars. Mattig m’acollí i durant un temps vaig pertànyer a la petita comunitat d’estudiants de l’institut. Ell era ja major, d’una altra generació. De caràcter afable i sorneguer, es burlava sovint dels nous estudiants per l’ús excessiu que féiem dels ordenadors i calculadores per realitzar càlculs simples. Ell que havia aprés a fer servir una regla de càlcul de manera hàbil, un dia em va reptar a fer un càlcul complicat: ell amb la regla de càlcul i jo amb la calculadora. I, clar, guanyà ell.

La darrera vegada que el vaig veure va ser durant la lectura de la meua tesi a la Universitat de València a mitjans dels anys 90.

El director de la tesi és, d’alguna manera, el pare científic d’un que comença en això de la ciència. Així que acabe de perdre un referent de la meua vida.

Gràcies Herr Professor. Que et camí et siga lleu.

Informació:

Mattig, W. (1958), “Über den Zusammenhang zwischen Rotverschiebung und scheinbarer Helligkeit”, Astronomische Nachrichten, 284 (3): 109, Bibcode:1958AN….284..109M, doi:10.1002/asna.19572840303

Fotos:

La imatge del professor Mattig prové de l’espectacular pàgina d’astrònoms solars il·lustres de Rob Rutten.

1. Professor Wolfgang Mattig. Rob Rutten. Amb permís a través de GNU Free Documentation License.
2. Necrològica al diari Badische Zeitung de Freibug.
3. Kiepenheuer Institut für Sonnephysik. Wikipèdia.

El Sol defallit

latest_512_0193De tan present que el tenim ja no hi pensem gaire. Però ací ben prop tenim un estel amb una força poderosa que permet la vida a la Terra però que a la vegada pot causar, de tant en tant, alguns problemes.

Vivim en una societat tecnològica que depén dels satèl·lits de posicionament global i de comunicacions, de la ràdio i televisió i d’internet. A més les línies d’alta tensió permeten connectar-se a la xarxa elèctrica fins i tot en els llocs més remots. Tanmateix, per a l’aparent tranquil·litat d’aquest món tan ben connectat l’activitat del Sol no és una bona notícia. Tota aquesta tecnologia trontolla quan el Sol demostra el seu poder.

La nostra estrella és una immensa esfera de gas en la qual el nucli crema hidrogen per crear heli, en una reacció nuclear tan energètica que manté el Sol calent des de fa uns 5000 milions d’anys. Tanmateix als habitants del nostre planeta ens ha de preocupar més l’intens camp magnètic, causa de l’activitat solar que es manifesta clarament amb les taques, les prominències però també amb les violentes erupcions solars o les ejeccions de massa coronals. A més la influència del Sol abasta tot el Sistema Solar ja que el camp magnètic s’estén més enllà de Neptú, passat Plutó i tots els membres del cinturó de Kuiper, arrossegat per les partícules carregades del plasma que forma el vent solar. I així es forma l’heliosfera, la immensa bombolla de gas magnetitzat que ens protegeix dels enigmàtics raigs còsmics,  les partícules d’alta energia que venen de la Galàxia i de molts altres racons de l’Univers.

hmi1898s

Tanmateix l’activitat solar no és constant, sinó que segueix un cicle d’11 anys. Hi ha anys en que el nombre de taques i d’altres fenòmens solars s’incrementen i d’altres en que minven i pràcticament són absent del Sol. Les taques són la manifestació més visible de la intensitat de l’activitat. Així l’any 2008, durant molts mesos no hi va haver cap taca a la superfície del Sol. Al contrari, l’any 2014 els fenòmens magnètics al Sol eren molt freqüents.

Durant uns dies de finals del mes de novembre el Sol tornà a quedar-se sense taques, clara indicació que el cicle solar d’activitat va de davallada. Encara queden dos anys per arribar teòricament al mínim però els signes de decaïment del magnetisme al Sol són evidents.

solar-cycle-sunspot-number

El gràfic preparat pel Centre de predicció de Meteorologia Espacial (Space Weather Prediction Center) del National Oceanic and Atmospheric Administration (NOAA) dels Estats Units mostra el nombre de taques presents a la superfície solar al llarg dels últims dos cicles. A banda de veure com l’activitat va de baixada i que s’espera el mínim del cicle d’ací a 14 mesos, es nota com de peculiar ha estat el present cicle: molt poques taques si ho comparem amb el cicle anterior.

Amb la baixada de l’activitat magnètica del Sol, l’heliosfera es debilita i permet que la radiació que prové de la Galàxia, els raigs còsmics, penetre més fàcilment en el Sistema Solar interior. I de fet les mesures preses en l’alta atmosfera terrestre així ho confirmen. El nivell de radiació a l’estratosfera ha augmentat. Ara serà un poc més perillós volar en avió ja que l’exposició a les partícules energètiques serà major.

640px-Magnetosphere_rendition

Tanmateix això no vol dir que de l’activitat solar no ens hem de preocupar. Ara mateix un gran forat coronal apunta cap a la Terra. D’aquestes zones solars ixen els camps magnètics “oberts” que condueixen el vent solar, un plasma format partícules carregades. En els pròxims tres dies arribaran els protons, electrons i ions del Sol i xocaran contra les capes altes de la magnetosfera terrestre. Es lliurarà una batalla celeste sobre les zones pròximes als pols terrestres. Els satèl·lits i infraestructures elèctriques poden quedar afectats si no estan protegits. Però tot anirà bé i la tempesta geomagnètica donarà un regal de colors als habitants nòrdics. Lluny dels llums de les ciutats, els qui visquen a Suècia podran gaudir d’unes belles aurores.

Imatges:

1.- Sol en llum ultravioleta extrema. La zona fosca correspon al forat coronal. 7 desembre 2016. Solar Dynamics Observatory, NASA.

2.- Sol en llum visible, SOHO, 22 novembre 2016

3.- Representació artística del vent solar colpejant la magnetosfera de la Terra (la mida i la distància no està a escala)

Una fantàstica erupció solar

Mentre parlavem dels elements magnètics del Sol i de l’estructura fina de les taques a la III Reunión Española de Física Solar y Heliosférica que aquests dies se celebra a Granada, a la seu de l’Instituto de Astrofísica de Andalucia, el Sol ens ha volgut fer un regal en forma d’explosió violenta que ens ha sobtat a tots.

Aquest matí, a les 8:41, els arcs magnètics sobre les taques solars 1226-1227 s’han tornat inestables, s’han acabat trencant i finalment han causat una erupció magnètica. El material calent que contenien aquests arcs s’ha escapat del Sol però gran part ha tornat a caure sobre el disc solar en forma de pluja coronal. Sobre la superfície solar l’impacte d’aquesta pluja ha causat abrillantaments que són zones molt més calentes.

El trencament dels arcs ha causat una erupció solar (una flare), una tempesta de partícles i una Emissió de Massa Coronal (ECM) que s’escapa del Sol. El satèl·lit de la NASA, el Solar Dynamics Observatory (SDO) ha gravat l’espectacle:

Els coronògrafs que porta la missió Solar and Heliospheric Observatory (SOHO) està monitoritzant la EMC i mostra com s’està, ara mateix escapant del Sol. Mira com el núvol s’expandeix. Els punts brillants són causats pels impactes de les partícules carregades de l’EMC sobre la CCD de la càmera del telescopi del SOHO.

Es calcula que aquestes partícles arribaran a la Terra entre avui 8 de juny i demà 9 i xocaran contra l’alta atmosfera solar causant unes belles aurores visibles des de les zones polars de la Terra.

Espirals solars

Espirals solars

El Sol està molt tranquil des de fa un any. Trobant-nos ara mateix al mig del mínim solar les taques no estan eixint i l’activitat magnètica està ben disminuïda.La feina dels físics solars continua, però. El Sol tranquil encara amaga molts secrets que el treball constant i pacient dels científics està traient a la llum.

L’energia que es crea al centre del Sol per reaccions nuclears es transporta cap a la superfície en forma de radiació. Però en les últimes capes el transport d’energia és més efectiu si és el gas calent qui puja en forma d’immenses bombolles que dipositen el seu calor en la fotosfera solar, capa de l’atmosfera solar d’on surt tota la llum visible. És la convecció solar i aquestes bombolles s’anomenen cel·les de convecció o granulació. Aquests grànuls, d’una gràndaria d’uns 1000 km, mostren una zona central brillant per on puja el gas calent.

Un cop refredat aquest gas cau cap a l’interior solar per les vores del grànul, d’un color fosc, talment com s’esdevé en una cassola d’aigua bullint.

L’equip de Física Solar del Grup Astrofísica i Ciències de l’Espai (GACE) de la Universitat de València, juntament amb científics de l’Instituto de Astrofísica de Canarias (IAC), acaben d’observar en detall la forma en que el gas calent de la granulació, una vegada fred, cau a les profunditats solars.

Segueix …

La convecció és un fenomen turbulent que ocórre en molts llocs a la natura. L’aire calent de l’atmosfera terrestre i tots els processos d’ebullició es comporten d’aquesta manera.

La convecció solar i la granulació són importants ja que a més de ser el mitjà en que l’energia del centre del Sol arriba a la superfíce és també els que modelen el comportament del camp magnètic superficial. Aquest, arrossegat pel moviment del gas,  es concentra en les zones intergranulars formant petits tubs de flux magnètic (100-200 km) que en el cas que s’hi s’agreguen altres tubs magnètics poden ser el germen de les taques solars.

Aquestes cel·les de convecció han estat simulades teòricament de manera acurada i precisa utilitzant superordinadors per alguns investigadors i els resultats preveuen que el gas fred ha de baixar a capes més baixes formant una espiral (veure foto).

Ara dos investigadors del GACEde la Universitat de València, Vicent Domingo e Iballa Cabello, i tres de l’IAC (J. A. Bonet, I.  Márquez, J. Sánchez Almeida), han aconseguit veure-ho amb imatges obtingudes durant una campanya d’observació al Telescopio Solar Sueco, ubicat en l’Observatorio del Roque de los Muchachos de La Palma juntament amb una observació simultània amb el telescopi solar espacial japonés Hinode.

Vicent Domingo, astrofísic valencià de 73 anys que ha treballat pràcticament tota la vida a l’Agència Espacial Europea i la NASA, i que va ser responsable científic de la sonda solar europeu-americà SOHO,  dirigeix la tesi doctoral d’Iballa Cabello, canària d’origen. Els dos pertanyen a un petit grup valencià d’estudi de la fotosfera, la superficie del Sol.

En les imatges s’aprecia, d’acord amb la investigadora Inés Márquez, i detalla la nota de premsa de l’IAC “com el material sembla seguir una espiral logarítmica abans de desapareixer, és a dir, una espiral amb la forma de la closca de caragol. Durant un temps pensarem que eren espirals àuries, el que li donava un inquietant toc esotèric al descobriment. No és així i sembla que hi ha espirals de tots els tipus”.

S’ha confirmat doncs un fenomen que havia d’existir segons els models teòrics. La matemàtica i la física teòrica s’han avançat a l’observació.

El diari Levante se’n va fer ressò i  va aparéixer en portada el dissabte passat.

Enhorabona als companys i amics….

Foto:
La imatge és una imatge en alta resolució del Telescopi Òptic Solar de la sonda japonesa Hinode. Aquesta és el primer instrument situat a l’espai que mesura la intensitat i la direcció del camp magnètic solar en la baixa atmosfera del Sol, anomenada fotosfera.  Aquesta imatge mostra una part molt ampliada de la fotosfera solar. L’energia de sota la superfície es transportada per convecció formant cel·les de convecció o granulació que es poden veure en aquesta imatge. Les zones més clares revelen on estan pujant el gas mentre que les zones més fosques intergranulars denoten on els gasos més freds  estan caient cap a l’interior. Web.

Crèdit imatge: Hinode JAXA/NASA/PPARC


Remolins al Sol
Video (fitxer adjunt)

Investigadors de la Universitat de València i de l’Instituto de Astrofísica de Canarias (IAC) han detectat en el Sol remolins que tenen la grandària dels huracans terrestres i que es produeixen per mateix mecanisme que fa girar l’aigua en una banyera quan s’acosta a l’engolidor.

Autor: IAC