La COVID-19 afecta l’exploració de l’espai

La pandèmia de la malaltia COVID-19 causada pel coronavirus SARS-CoV-2 està afectant a la població mundial. Sense vacuna de moment, només mesures preventives són efectives com el confinament total o parcial de la població. A hores d’ara es calcula que un 38% de la humanitat està sota regim d’aïllament a casa i sense contacte amb altres humans llevat de la família pròxima.

Aquesta frenada brusca de les relacions socials a tot el planeta per lluitar contra un enemic comú és una novetat. Aquesta desacceleració de l’economia, dels viatges, i del foment de les relacions virtuals serà una prova del que segurament caldrà fer en un futur pròxim per evitar el col·lapse de la humanitat per causa del canvi climàtic.

Un sector que està també afectat per la pandèmia és l’espacial. Tots els grans centres espacials estan sota mínims o simplement tancats fins que passe tot. La por a que personal altament especialitzat i difícilment substituïble quedara infectat del virus ha portat a solucions dràstiques.

Un Ariane 5 despega del Centre Espacial Europeu de la Guaiana.

Ja fa uns 10 dies que el Centre Espacial de la Guaiana (CSG)  a la Guaiana Francesa, des d’on es llancen principalment els satèl·lits de l’Agència Espacial Europa (ESA) amb els coets europeus Ariane, va decidir evitar nous llançaments i ajornar tots els vols programats fins a nova ordre.

Tanmateix molts d’aquestes missions ja es trobaven en la cua per ser enviades a l’espai. És per això que l’empresa europea Arianespace, l’agència espacial francesa CNES i totes les companyies relacionades amb el CSG estan ara mateix supervisant operacions per situar coets i satèl·lits en condicions segures.

ESA redueix les operacions de les missions científiques enmig de la pandèmia

En resposta a la pandèmia de coronavirus que no s’atura, l’Agència Espacial Europea (ESA) ha decidit reduir encara més el personal a l’interior del seu Centre de Control (ESOC) de missions a Darmstadt, Alemanya.

Els nous ajustaments han requerit aturar temporalment l’operació d’instruments i la recollida de dades en quatre missions científiques del Sistema Solar, que formen part de la flota més àmplia de 21 naus espacials que actualment està volant per a l’Agència i que són controlades des del Centre Europeu d’Operacions Espacials (ESOC) a Darmstadt.

Solar Orbiter. ESA/ATG medialab

Aquestes mesures han afectat la missió científica Cluster (4 naus en òrbita solar per estudiar el vent solar en 3D),  ExoMars Trace Gas Orbiter (TGO, mesura del metà de Mart), Mars Express (imatges de la superfície marciana) i Solar Orbiter (missió al Sol, amb participació valenciana i catalana) que han estat situades en espera. Aquests ajustaments suposen apagar els instruments científics en aquestes naus espacials i situar-los en una configuració segura de manera que necessitaran poca o cap intervenció humana des de terra. ESA controlarà les condicions en evolució per planificar el futur reinici de les operacions científiques.

ESA va implementar de forma precoç mesures de mitigació del risc. La gran majoria de la mà d’obra de l’ESA treballarà en teletreball durant gairebé dues setmanes. Només el personal clau que realitza tasques crítiques, que inclou el manteniment de les operacions espacials en temps real, seguirà present als establiments d’ESA de tota Europa.

Tempesta Gloria. Met-11 Airmass RGB, 21 gener 2020 09:00 UTC. EUMETSAT.

EUMETSAT,  l’altre centre de control de satèl·lits que s’encarrega, entre d’altres coses, d’enviar les fotografies dels satèl·lits METEOSAT i que té la seu central a Darmstadt, a l’altra banda del carrer on hi ha ESOC també ha quedat afectat per les restriccions de la COVID-19. I com els altres companys d’ESA, NASA i d’altres centres de recerca, estan experimentant algunes dificultats per mantenir tots els sistemes en marxa.

NASA prioritza projectes

El mateix està fent l’agència espacial nord-americana NASA. La direcció ha avaluat les missions i projectes per veure quines poden ser fetes remotament i quines han de ser fetes presencialment. Encara que la majoria de tasques poden fer-se des de casa i el treball no minvarà, algunes hauran de fer-se de manera precisa ja que son missions crítiques.

D’elles dues missions són fonamentals per a la NASA: la Mars 2020, la missió d’exploració marciana que ha de ser enviada en la finestra de llançament d’enguany i el gran telescopi James Webb que, després de múltiples retards i pressupostos desorbitats, hauria de ser llançat l’any que ve.

Rover Perseverance de la NASA en la superficie de Mart. NASA/JPL-Caltech

La missió Mars 2020 de la NASA, que inclou el vehicle de superfície Perseverance i l’helicòpter Mars, és una prioritat màxima per a l’agència, i, per tant, les preparacions del llançament i el mateix llançament no s’ajornaran. Si no s’aprofita la finestra de llançament de finals d’any quan Mart està més pròxim, caldrà esperar dos anys. En aquests treballs bona part de la feina la fan treballadors i contractistes que treballen de forma remota a l’agència. Tanmateix hi ha treballs que s’estan fent al Jet Propulsion Laboratory a Pasadena, Califòrnia, que caldrà mirar amb cura sobretot després del confinament decretat  pel governador de Califòrnia.

Una altra cosa és el James Webb Space Telescope. La construcció i assemblatge d’aquest gran telescopi que ha de substituir el vell telescopi espacial Hubble, que du ja 30 anys a l’espai, és un veritable mal de cap per a la NASA. Ara, com que es construeix a Califòrnia, ha de suspendre les operacions d’integració i proves. Les decisions es podrien ajustar a mesura que la situació evolucione. La decisió es va prendre per garantir la seguretat de la mà d’obra. L’observatori roman en seguretat en un entorn net. La previsió de llançament era el març del 2021. Ja veurem si es pot complir o es torna a ajornar com ja ha passat diverses vegades.

Respecte al control dels astronautes actualment en òrbita, Andrew Morgan, Oleg Skripochka i Jessica Meir actualment en l’Estació Espacial Internacional, continua el suport a les seues tasques diàries. No se’ls pot abandonar com passà amb el cosmonauta Sergei Krikalev, que visqué la caiguda de la URSS des de l’espai. Els controladors treballen des del Centre de Control de Missions del Centre Espacial Johnson de Houston, on, des de primeries de març ja es van prendre diverses mesures dràstiques per reduir el risc de contagi de l’equip format per personal altament especialitzat.

A més a més, el proper 9 d’abril s’han de llançar des del cosmòdrom de Baikonur al Kazakhstan  l’astronauta de la NASA Chris Cassidy i els cosmonautes russos Anatoly Ivanishin i Ivan Vagner que hi romandran fins a l’octubre del 2020. Un protocol molt sever de les agències espacials evita que els astronautes pugen malalties a l’Estació Espacial Internacional com un refredat o una grip. Com en tots els llançaments amb tripulacions, aquestes han de romandre en quarantena dues setmanes abans de llançar-les. Aquest procés garanteix que no estiguin malalts ni incuben una malaltia quan arribin a l’estació espacial. Per aquesta banda, per tant, no pujaran el coronavirus SARS-CoV-2 a l’espai.

En definitiva, l’espai també ha quedat afectat per la malaltia, per la mort i per la paràlisi de la humanitat.

Imatges:

1.- Main Control Room / Mission Control Room of ESA at the European Space Operations Centre (ESOC) in Darmstadt, Germany.
2.- L’enginyer de la NASA, Ernie Wright, observa els primers sis segments dels 18 que formaran el mirall del telescopi James Webb, preparats per començar les proves criogèniques finals al Marshall Space Flight Center de la NASA. NASA / MSFC / David Higginbotham.

Solar Orbiter fa les primeres mesures

Solar Orbiter, la nova sonda de l’Agència Espacial Europea (ESA) per a l’exploració del Sol, va ser llançada sense problemes el passat dilluns 10 de febrer, des de Cap Canaveral a Florida i ara viatja cap a la nostra estrella. Serà un llarg viatge ja que per assolir la seua meta necessitarà una assistència gravitatòria de la Terra i diverses de Venus per a que d’aquesta manera poder sortir del plànol de l’eclíptica i explorar els pols solars.

Solar Orbiter porta a bord un conjunt de 10 instruments, alguns d’ells per fer mesures in situ  i d’altres de teledetecció per observar la superfície solar turbulenta, l’atmosfera exterior calenta del Sol i els canvis del vent solar. Els instrumentes de teledetecció obtindran imatges d’alta resolució de l’atmosfera del Sol (la corona) i del disc solar. Els instruments in situ mesuraran el vent solar i el camp magnètic solar als voltants de l’òrbita.

Els quatre instruments in situ mesuren ara mateix les propietats ambientals al voltant de la nau, especialment les característiques electromagnètiques del vent solar, el corrent de partícules carregades que allibera el Sol. Tres d’aquests instruments in situ compten amb sensors en el braç de 4,4 m de llarg.

“Mesurarem valors de camps magnètics milers de vegades més petits que els que coneixem a la Terra -assenyala Tim Horbury, de l’Imperial College de Londres, principal investigador del magnetòmetre (MAG) -. Fins i tot els corrents en els cables elèctrics de la sonda generen camps magnètics molt més grans que els que necessitem mesurar. Per això, els nostres sensors estan instal·lats en un braç, per mantenir-los allunyats de l’activitat elèctrica de la nau “.

Les dades recollides amb l’instrument MAG durant el desplegament del braç de la nau espacial Solar Orbiter de l’ESA mostren com el camp magnètic disminueix des de la proximitat de la nau espacial fins on es despleguen realment els instruments. ESA/Solar Orbiter/MAG.

Els controladors de terra del Centre Europeu d’Operacions Espacials de Darmstadt (Alemanya) van activar els dos sensors del magnetòmetre, un prop de l’extrem de braç i un altre més a prop de la nau, unes 21 hores després de l’enlairament. L’instrument va registrar dades abans, durant i després de desplegar-se el braç, el que va permetre als científics comprendre la influència de la nau en els mesuraments una vegada ja es troba en l’entorn espacial.

Solar Orbiter es comunica amb la Terra unes 10 hores al dia, actualment des del l’estació de Cebreros, a prop de Madrid. Dades del 24 de febrer, ja a quasi 7 milions de km de la Terra. ESA

Les dades rebudes mostren com es redueix el camp magnètic des dels voltants de la nau fins al punt on estan desplegats els instruments -afegeix Tim-. Això confirma de manera independent que el braç s’ha desplegat i que els instruments realment proporcionaran en el futur mesuraments precisos “.

Més informació de la missió:
La missió Solar Orbiter de camí cap al Sol

Imatges:

1.- Llençament de Solar Orbiter la matinada del 10 de febrer 2020 des del Kennedy Space Center, Cape Canaveral, Florida, USA. ESA–S. Corvaja.

La missió Solar Orbiter de camí cap al Sol

Solar Orbiter. ESA/ATG medialab

Aquesta matinada a les 5:03 h. s’ha enlairat des de cap Canaveral a Florida (EEUU) la sonda Solar Orbiter, una missió dirigida per l’Agència Espacial Europea (ESA), amb forta participació de la NASA, per abordar la qüestió central sobre com el Sol crea i controla l’heliosfera, la gran regió de l’espai, en forma de bambolla que envolta el Sol i creada per les partícules energètiques que aquest emet.

Solar Orbiter podrà estudiar detalladament el Sol gràcies a la combinació d’instruments científics amb que va equipat i a l’òrbita que recorrerà al seu voltant. La sonda s’hi acostarà fins a una distància de 42 milions de quilòmetres, més prop que el planeta Mercuri, fet que implica que les parts de Solar Orbiter que miren al Sol hauran de suportar temperatures de més de 500 ºC, mentre que les parts a l’ombra estaran al voltant de -180 ºC. Al llarg de la missió, l’òrbita de la sonda anirà augmentant d’inclinació respecte a l’eclíptica fins a uns 30º, la qual cosa permetrà obtenir per primer cop imatges d’alta resolució dels pols solars.

John Kraus @johnkrausphotos

Un equip de l’Institut de Ciències del Cosmos de la Universitat de Barcelona (ICCUB-IEEC) i un altre del GACE/LPI (Grup d’Astronomia i Ciències de l’Espai, Laboratori de Processat d’Imatges), del Departament d’Enginyeria Electrònica (Escola Tècnica Superior d’Enginyeria) i del Departament d’Astronomia i Astrofísica (Facultat de Física) de la Universitat de València han treballat en el desenvolupament i fabricació de l’instrument PHI (Polarimetric and Helioseismic Imager) que va a bord de la sonda Solar Orbiter.

El PHI (Polarimetric and Helioseismic Imager) proporcionarà mesures d’alta resolució del camp magnètic de la fotosfera solar i mapes de la seua brillantor en l’espectre visible. També produirà mapes de velocitat del moviment del material de la fotosfera que permetrà realitzar recerques heliosísmiques de l’interior del Sol, en concret de la zona convectiva, en la base del qual es crea i reforça el camp magnètic i a través del qual puja a la “superficie” o fotosfera.

John Kraus @johnkrausphotos

L’ICCUB s’ha responsabilitzat de desenvolupar i implementar un sistema d’estabilització d’imatges (ISS) que permetrà compensar els moviments de la sonda per poder obtenir imatges de la qualitat requerida. «Solar Orbiter és la missió solar més completa des del punt de vista instrumental», explica Josep M. Gómez Cama, investigador de l’ICCUB i membre del Departament d’Enginyeria Electrònica i Biomèdica de la UB. Concretament, la sonda disposa de deu instruments que pesen en total 209 quilograms. «La limitació de pes també ha estat un repte a l’hora de dissenyar l’instrument PHI, que pesa uns 30 kg», destaca Gómez Cama. Quatre dels instruments, que permeten la detecció del vent solar (plasma i camp magnètic), radiació i partícules emeses, funcionen in situ, mentre que els altres sis ho fan de manera remota i permeten obtenir imatges en diferents longituds d’ona i fer espectroscòpia de la fotosfera i corona solars.

Pas endavant per a la meteorologia espacial

D’altra banda, els investigadors del Grup de Física Heliosfèrica i Meteorologia Espacial (HPSWG) de la UB han proporcionat suport científic a l’equip del detector de partícules energètiques (EPD) construït per un equip de la Universidad de Alcalá. Els membres de l’HPSWG, experts en modelatge i anàlisi de dades, han desenvolupat models per predir l’entorn de radiació de partícules amb què es trobarà Solar Orbiter, i estan desenvolupant eines per facilitar l’anàlisi de les mesures de partícules que recollirà.

En les seues diverses aproximacions al Sol, la sonda Solar Orbiter orbitarà a una velocitat semblant a la solar la qual cosa permetrà fer el seguiment continuat d’una zona activa del Sol durant un llarg temps i planificar campanyes específiques de manera remota. Segons Àngels Aran, investigadora del grup HPSWG, «els resultats obtinguts per Solar Orbiter permetran entendre la física que connecta l’estrella amb el medi interplanetari i ajustar així els models actuals de meteorologia espacial». «A més —afegeix la investigadora—, la combinació d’observacions de Solar Orbiter amb les dades obtingudes des d’altres sondes situades a l’espai interplanetari, com a l’entorn terrestre, ens donarà una visió en estèreo del mateix esdeveniment». 

Solar Orbiter a l‘Astrotech payload processing facility, Florida, USA, el 21 de gener 2020, l’últim dia abans del muntatge en la còfia del coet. Destaca la pantalla de protecció solar negra. ESA–S. Corvaja

El Sol és una estrella de massa mitjana en un estadi avançat i estable de la seua evolució. Tanmateix, experimenta erupcions periòdiques a curt termini i de difícil predicció conegudes com a activitat solar. El domini del Sol s’estén més enllà de l’atmosfera solar, mitjançant el vent solar, donant lloc a l’heliosfera, que inclou l’espai interplanetari i l’entorn planetari més enllà de Plutó. Així que comprendre l’acoblament del Sol i l’heliosfera és primordial per entendre el funcionament del nostre sistema solar. Les diferents condicions del vent solar i de l’activitat solar són els principals motors de la meteorologia espacial. La meteorologia espacial fa referència a la resposta de l’entorn espacial a les tempestes solars, que poden tenir un impacte significatiu en la societat actual. Per exemple, l’activitat solar, com ara erupcions solars i ejeccions de massa coronal, poden provocar ràfegues de partícules energètiques que causen danys en els satèl·lits, afecten els sistemes de navegació, o perjudiquen els astronautes en la futura exploració de la Lluna i Mart.

Aquests esdeveniments de partícules energètiques solars, principalment electrons, protons i ions més pesants fins a energies d’uns quants gigaelectronvolts, imposen restriccions a les activitats humanes a l’espai. Són difícils de predir pel coneixement incomplet dels processos físics bàsics implicats i la manca d’observacions a tota l’heliosfera.

Un dels propòsits de la missió de Solar Orbiter és explorar els fenòmens que passen en la zona dels pols solars. Com que la Terra i les sondes que s’hi llencen es troben en el pla de l’eclíptica, que correspon aproximadament a la zona equatorial solar, cal donar una empenta a la sonda per fer-la “pujar” l’òrbita. Això s’aconsegueix agafant energia dels planetes a través de les assistències gravitatòries. Així, Solar Orbiter farà una assistència gravitatòria al volant de la Terra i nombroses passos al voltant de Venus al llarg de la seua missió per ajustar la seua òrbita, apropant-la al Sol i per fer-la fora del pla de la eclíptica per observar el Sol des d’inclinacions cada vegada més altes. D’aquesta manera, la nau espacial podrà prendre les primeres imatges de les regions polars del Sol, unes dades mol importants per comprendre el funcionament del Sol.

Assistència gravitatòria de la Terra el 26 de novembre de 2021. ESA/ATG medialab

La combinació dels diferents instruments a bord de la nau espacial i la seua òrbita proporcionarà nova informació per comprendre les característiques solars i la seua connexió amb l’heliosfera i, al seu torn, ajudarà a comprendre la generació de tempestes solars.

Diverses assistències gravitatòries de l’òrbita de Solar Orbiter fins al 2030. ESA

Per als amants de les xarxes socials, s’ha creat l’usuari twitter @ESASolarOrbiter i l’etiqueta #WeAreAllSolarOrbiters per seguir al moment la missió.

Més informació sobre la missió al Solar Orbiter Publication Archive

També existeix un llibret Facing the Sun on s’explica la missió per a periodistes i public en general, en el idiomes de treball de la ESA. Ací està la versió en castellà.

Ací està també penjat aquest Mirando al Sol que explica la missió Solar Orbiter.

Ens ha deixat Vicent Domingo, el gran senyor de la física solar

Vicent Domingo Codoñer, gran senyor de la física solar i de l’astrofísica valenciana i europea ens ha deixat per sempre. Actualment jubilat, era professor honorari al Departament d’Astronomia de la Universitat de València i membre del Grup d’Astronomia i Ciències de l’Espai, Laboratori de Processat d’Imatges (GACE/LPI).

Vicent es va formar en la Universitat de València i formava part de la primera generació de físics valencians que van eixir al món per aprendre primer i aportar molt de la seua experiència i saviesa. Vicent tenia una extensa experiència investigadora en l’àmbit de la física nuclear i de partícules, en física solar i en projectes espacials.

Va treballar en la primera part de la seua extensa carrera investigadora a l’Institut de Física CospuscularI/CSIC-Universitat de València, al Centre d’Études Nucléaires (França), al CERN (Suïssa), a la Universidad de La Paz (Bolivia), al MIT (EUA) i a la University of Colorado (EUA).

La segona part de la seua vida investigadora començà el 1970 quan entrà a formar part de la Agència Espacial Europea (ESA). Allí  va ser el científic responsable del projecte de la missió d’estudi del Sol SOHO, de l’Agència Espacial Europea, durant el desenvolupament fins al seu llançament l’any 1995. Una vegada a l’espai entre 1995 i 1998 va ser director del seu funcionament des del Goddard Space Flight Center de la NASA, a Maryland (EUA).  La missió  SOHO, amb una durada nominal de dos anys, assoleix quasi  25 anys de funcionament i és, actualment, el satèl·lit d’observació solar amb més edat deSOHO1 Foto ESA la història.

L’any 2000, ja jubilat de la ESA,  Vicente Domingo va tornar a la Universitat de València per a formar un grup de física solar i de desenvolupament d’instrumentació espacial per a missions solars, dins del Grup d’Astronomia i Ciències de l’Espai (GACE). Des de llavors i fins a la seua  mort ha participat en el desenvolupament de les mission estratosfèriques Sunrise i de l’instrument SO/PHI per la nova missió solar Solar Orbiter que serà llençada cap el Sol, si tot funciona correctament, la setmana que ve des de Cap Canaveral.

Gràcies Vicent pel que ens has donat, tant científicament com personalment.

El cel de febrer de 2020

L’any 2020 avança inexorablement i, ara, en febrer, les temperatures s’enfilen cap amunt i ens deixen cels més rasos després d’haver-nos prohibit l’observació celeste des dels primers dies de l’any.

La constel·lació d’Orió continua essent l’objecte més admirat del cel, amb el cinyell dels tres estels ben visible que la fan fàcil de trobar. I des d’ella ens permet de trobar la Llebre al seus peus, els gossos de cacera a la seua dreta i el gran Taure, a la V de les banyes, dalt i a la seua esquerra. No deixeu d’explorar aquesta part del cel de nit, tant si esteu a ciutat o al camp ja que la brillantor dels seus estels principals ens ho permet sempre.

Betelgeuse, l’estel supergegant roig situat al muscle dret d’Orió, continua perdent lluminositat..  Els astrònoms la segueixen de prop i han arribat a la conclusió que des de setembre de 2019 la temperatura de Betelgeuse ha baixat 100 graus, mentre que la lluminositat ha caigut quasi un 25 por cent. A partir d’aquestes mesures i amb l’ús dels model d’estructura i evolució estel·lar, el radi de l’estrella haurà augmentat  un 9 por cent.

Mentre aquestes coses passen ben lluny enllà, a uns 700 anys llum, més prop d’ací, els planetes es mouen al cel jugant a acaçar-se, moltes vegades ajudats per la Lluna.

Només Venus i Mercuri seran visibles al capvespre. Una vegada ja s’ha amagat el Sol sota l’horitzó oest, apareixerà ben alt i brillant el planeta Venus. Vist al telescopi, aquest planeta mostra ara més de la meitat del disc enllumenatt, cosa que el fa especialment brillant durant les primeres hores de la nit. Tanmateix encara no ha assolit la seua màxima separació del disc solar (l’anomenada màxima elongació oriental). Això no ocorrerà fins els primers del mes de març. A la figura adjunta podreu veure la posició de Venus i la seua òrbita vista des de la superfície de la Terra el 10 de febrer.

10 de febrer 2020. Òrbites de Venus i Mercuri vistes des de la Terra. Màxima elongació oriental de Mercuri en la posta de Sol. Mercuri a 18,2° del Sol.

Mercuri, l’altre planeta interior a l’òrbita terrestre, serà visible aquest mes de febrer. Després de la posta de Sol serà observable cap a l’oest cada dia prop de l’horitzó però només durant pocs minuts. La rotació de la Terra farà que davalle ràpidament rere l’horitzó per la qual cosa és important cercar indrets sense obstacles en direcció oest. El dia 10 de febrer Mercuri es trobarà en el punt de màxima separació angular del Sol (màxima elongació oriental). En l’òrbita dibuixada a la figura adjunta veureu com es troba just a l’extrem de l’òrbita vista des de la Terra.

Serà, però, a la matinada quan els planetes i la Lluna facen el ball més espectacular. Si dediqueu cada dia uns minuts per mirar cap a l’est just una mitja hora abans de l’eixida del Sol, podreu meravellar-vos del moviment d’acostament d’aquests planetes tot amanit de tant en tant per la presència de la Lluna.

Poc abans de l’alba, podreu veure l’alineament dels planetes Saturn, Júpiter i Mart, tots al voltant de la constel·lació de Sagitari. Des de l’horitzó es trobarà Saturn. Una mica amunt Júpiter i més alt encara Mart, que al llarg del més anirà acostant-se a Júpiter, fins al superencontre del mes de març. Però, d’això ja en parlarem.

La Lluna en quart minvant farà acte de presència durant la segona quinzena del mes. Del 18 al 21 de febrer la Lluna anirà fent parella amb cadascun dels planetes observables de matinada.

El 18 de febrer la Lluna s’acostarà a Mart, tant que a les 15:22 la Lluna taparà el planeta. Serà un eclipsi de Mart que, en produir-se de dia, serà inobservable per a nosaltres. Per contra, sí que serà visible per als observadors d’`Amèrica del Nord.

El 19 de febrer la Lluna se situarà entre Júpiter i Mart mentre que el 20 ja serà parella de Saturn. Finalment el 21 completarà un bell alineament amb tots els planetes. L’observació atenta d’aquest passeig de la Lluna permetrà veure en directe el moviment de la Lluna al cel i recordar-nos que és un satèl·lit de la Terra i que l’orbita.

I Betelgeuse no ha explotat de moment.

S’ha estimat que cada 50 anys de mitjana una estrella massiva de la Via Làctia explota. Però no s’observen tantes supernoves en la Galàxia com diuen els estudis. L’última supernova observada en la nostra galàxia va ser probablement observada per l’astrònom britànic John Flamsteed en 1680. D’ella queda el romanent conegut com Cassiopeia A. Aparentment estem endarrerits alguns segles per que fa a la taxa anual calculada. Per això la possible explosió de Betelgeuse ha entusiasmat tant els astrònoms ja que ens reconciliaria d’alguna manera amb la taxa anual d’explosions De tota manera encara ens en faltarien moltes. On són les nostres supernoves?

La Lluna presentarà les següents fases en hora local:

Fase Mes Dia Hora
Quart creixent Febrer 2 02 42
Lluna plena Febrer 9 8 33
Quart minvant Febrer 15 23 17
Lluna nova Febrer 23 16 32

Si voleu obtenir més informació podeu punxar aquest enllaç. També podeu veure un senzill mapa del firmament del mes de febrer de 2020. I tot això gràcies al Planetari de Quebec.

Imatges

1.- Cassiopeia A observada pel Telescopi Espacial Hubble. Aquesta nebulosa fou probablement observada per John Flamsteed en 1680, i és el resultat de l’última supernova observada en la Via Làctia. NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration.
2.- Imatge de la nebulosa que envolta a l’estrella supergegant vermella Betelgeuse. La nebulosa està composta per material llançat per l’estrella a l’espai. El petit cercle vermell de centre representa la posició de la superfície visible de Betelgeuse. El disc negre correspon a una part molt brillant de la imatge que va ser tapada per permetre la detecció de la nebulosa menys brillant. ESO / VLT
3-6- Simulacions de Stellarium.

Què n’esperem del 2020?

L’any 2020 ha començat i serà bo saber que podem esperar en el món de la ciència i tecnologia en els camps de l’astronomia, la física i la biologia. I com cada any la revista Nature ens ho explica. Tractaré de fer-ne un resum.

Astronomia i exploració espacial

Des del punt de vista de l’exploració espacial, Mart, la Lluna i el Sol seran els objectius principals de les agències espacials.

Mart rebrà enguany una veritable invasió terrestre.  La NASA llençarà el mes de juliol el nou explorador Mars 2020, que recol·lectarà mostres per ser recollides en futures missions. A destacar que per primera vegada es desplegarà un petit helicòpter per explorar més terreny al voltant del rover. Si tot funciona bé serà el seu quart rover marcià, després del Spirit, l’Opportunity i el Curiosity, que és l’únic que encara funciona. Tot un rècord. El nou explorador, de moment, no té nom popular assignat.

Rússia juntament amb l’Agència Espacial Europea llançarà també a l’estiu la missió ExoMars2020 i desplegarà una estació fixa, Kazachok, i un explorador mòbil en la superfície marciana. El rover, anomenat Rosalind Franklin en honor a la descobridora de l’estructura del ADN, buscarà proves de vida passada o present en Mart. L’anterior missió ExoMars2016 acabà de manera regular, ja que aconseguí posar el satèl·lit ExoMars Trace Gas Orbiter (TGO) en òrbita però estavellà el Mòdul de descens Schiaparelli. Ara esperem que aquesta vegada el rover europeu-rus arribe a la superfície sa i estalvi. De moment sembla que tenen problemes amb el paracaigudes.

L‘oposició de Mart del 2020 també serà aprofitada per Xina per envair-hi el seu primer mòdul de descens, Huoxing-1, que desplegarà un petit explorador. Vol aprofitar l’experiència dels seus rovers lunars.

I finalment, els Emirats Àrabs Units enviaran un orbitador, en la que serà la primera missió a Mart d’un país àrab.

La Lluna continuarà, com no podia ser d’una altra manera, sent un objecte d’interés per a les agències espacials. Xina continuarà amb el seu programa d’exploració amb la missió Chang’e-5 que retornarà  mostres de roques a la Terra. Mentrestant la missió Hayabusa2 del Japó arribarà a la Terra portant les preuades mostres de l’asteroide Ryugu. Per la seua part OSIRIS-REx arrencarà trossets de l’asteroide Bennu.

Solar Orbiter. ESA/ATG medialab

El Sol serà també protagonista enguany ja que a la sonda Parker que ja l’orbita, s’hi sumarà la gran nau europea Solar Orbiter, que amb 11 instruments científics, estudiarà de ben prop la corona i cromosfera solars.  A principis de febrer, un enorme coet Atlas V 411 el llençarà cap a la nostra estrella des de Cap Canaveral. Ja en parlarem.

Els científics de la col·laboració Event Horizon Telescope, que feren possible obtenir la primera imatge del forat negre de la galàxia M87 l’abril passat, tenen previst enguany donar-nos nous resultats espectaculars, aquesta vegada del forat negre supermassiu de la nostra galàxia, anomenat Sagitari A*.

Gaia, operada per l’Agència Espacial Europea (ESA), ha creat el mapa tridimensional més gran, precís, de la nostra Galàxia. Aquesta imatge mostra la visió de la Via Làctia basada en mesures de gairebé 1.700 milions d’estrelles.

A més a més, a final d’any es preveu publicar la nova actualització del mapa  3D de la Via Làctia, a partir de les dades de la missió Gaia. Les anteriors actualitzacions ens donaren molta informació relacionades amb l’estructura, el origen i l’evolució de la Via Làctia.

I els consorcis LIGO i Virgo continuaran descobrint ones gravitatòries causades per col·lisions de forats negres, estels de neutrons i, fins i tot forats negres i estels.

Física

Pròximament s´ha de debatre la proposta del Centre Europeu de Recerca Nuclear (CERN) de la futura construcció d’un nou col·lisionador sis vegades més potent que l’actual Gran Col·lisionador d’Hadrons LHC. Si s’aprova el projecte costaria uns 21.000 milions d’euros i caldria construir un nou anell de 100 km de circumferència sota la ciutat de Ginebra.

Des del descobriment del bosó de Higgs el 2012 no s’ha descobert cap nova partícula al CERN, per la qual cosa es pensa que cal construir màquines molt més potent per estudiar la matèria a més altes energies. Tanmateix, no tothom pensa que és bona idea fer unes despeses tan elevades per un retorn científic desconegut. La solució final la sabrem enguany.

I potser s’aconseguisca el somni de tot físic, aconseguir material sense resistència a temperatura ambient. De moment només s’ha pogut passar corrent sense pèrdues a molt baixes temperatures o a altes pressions. Però després de l’èxit dels compostos coneguts com a “superhidrurs de lantà”, que el 2018 van batre tots els rècords de temperatura per a la superconductivitat, els investigadors esperen sintetitzar superhidrurs d’itri que podrien ser superconductors a temperatures de fins a 53 ° C.

Finalment el sector energètic podria assolir una altra fita durant els Jocs Olímpics de Tòquio al juliol, quan es preveu que Toyota revele el primer prototip d’un cotxe alimentat per bateries d’ió de liti d’estat sòlid. Aquestes substitueixen el líquid que separa els elèctrodes de la bateria per un material sòlid, augmentant la quantitat d’energia que es pot emmagatzemar.

Moltes altres descobertes s’esperen en aquest 2020 en el camp de la biologia, com el del llevat sintètic, amb ADN creat en laboratori, les proves d’una vacuna contra la malària o el creixement d’òrgans humans en altres animals. Ho podeu llegir a l’article original de Nature.

Figures:
1- En una sala neta del Jet Propulsion Laboratory en Pasadena, California, els enginyers observen els primers moviments del Mars 2020 el 17 de desembre, 2019.

La sonda Parker, un passeig per la corona solar

Malgrat que el Sol és l’estrella més pròxima, encara no hem estat capaços de desvetlar tots els secrets. La formació de les zones actives solars, l’escalfament de l’atmosfera, els mecanismes d’emissió de partícules ionitzades, i molts altres fenòmens són encara camps de la física solar que encara estan a les beceroles. La sonda nord-americana Parker, actualment en òrbita solar, i l’europea Solar Orbiter que s’enlairarà el febrer, són les apostes dels científics solars per aprofundir en la complexa geografia del Sol.

La  Sonda Solar Parker es una sonda espacial de la NASA, llençada l’any passat, amb l’objectiu d’estudiar les capes més externes de l’atmosfera solar, la corona solar, durant uns anys. Per aconseguir-ho seguirà unes òrbites cada vegada més pròximes al Sol, fins aconseguir acostar-se a només  a 8,86 radis solars (6,2 milions de quilòmetres) de la superfície (fotosfera) del Sol. Diversos instruments mesuren actualment in-situ el camp magnètic, el flux de partícules del vent solar, la densitat del medi i després dels dos primers passos al voltant del Sol s’acaben de publicar els primers resultats.

La sonda està dedicada al físic solar Eugene Parker, actualment professor emèrit de la Universitat de Chicago. Ell va ser el pioner en l’estudi teòric de les propietats dels camps magnètics solars, a gran i sobretot a petita escala. En aquells articles primerencs ens detallava com es mou un plasma ionitzat, com és el vent solar mentre s’allunya del Sol, enganxat al camp magnètic, com es mouen les ones magnètiques per l’atmosfera solar, com es transporten o sosté la matèria en les estructures de la cromosfera i corona.

Ara la sonda Parker mesura directament les estructures que estudià el científic fa més de 50 anys. Com el mateix Sol, el vent solar que s’emet contínuament des de la corona està format per plasma, on els electrons carregats negativament s’han separat dels ions carregats positivament, i formen un mar de partícules flotants lliures. Aquestes partícules flotants lliures es mouen enganxades als camps elèctrics i magnètics solars, i els canvis en el plasma modifiquen aquests camps. L’instrument FIELDS ha examinat l’estat del vent solar mitjançant la mesura i l’anàlisi detallada de com van canviar els camps elèctrics i magnètics al voltant de la nau espacial.

Aquestes mesures han mostrat reculades ràpides en el camp magnètic i dolls ràpids de matèria, totes característiques que fan que el vent solar sigui més turbulent del que es pensava. Aquestes inversions, anomenades “interrupcions”, duren des de pocs segons fins a diversos minuts mentre passen per la sonda. Durant un canvi, el camp magnètic torna a girar sobre si mateix fins que apunta gairebé directament cap al Sol. Aquests detalls són claus per comprendre com el vent dispersa l’energia a mesura que surt del Sol i s’escampa a tot el sistema solar.

Variacions brusques de la direcció del camp magnètic solar mesurat per Parker. Credit: NASA/Goddard/CIL

Però les mesures de Parker han proporcionat un altre descobriment. El vent solar arriba a la Terra de manera radial, directament en línia recta del Sol. Bé això sembla ja que en les proximitats del Sol, com s’ha observat, el vent solar ix de les capes superiors de l’atmosfera solar lligat a la rotació del Sol, corbant-se i girant amb ell.  Aquest fenomen no s’observa des de la Terra i calia anar-hi ben prop per mesurar-lo. “El gran flux de rotació del vent solar vist durant les primeres trobades ha estat una autèntica sorpresa “, ha dit Justin Kasper, investigador principal de l’instrument SWEAP — Solar Wind Electrons Alphas and Protons — de la University of Michigan in Ann Arbor..” Si bé esperàvem poder veure el moviment rotacional més prop del Sol, les altes velocitats que veiem en aquestes primeres trobades són gairebé deu vegades més grans del que preveien els models estàndard.

La Parker Solar Probe observà un vent lent que sortia del petit forat coronal, el llarg i prim punt negre vist a la part esquerra del Sol en aquesta imatge capturada per l’Observatori de la Dinàmica Solar SDO el 27 d’octubre de 2018. NASA / SDO

Finalment Parker també a mirat la densitat de pols interplanetari present en la trajectòria al voltant del Sol. Els científics han sospitat des de fa temps que, prop del Sol, aquesta pols s’escalfaria a altes temperatures per la potent llum solar, que es convertiria en un gas i crearia una regió lliure de pols al voltant del Sol. Però ningú no ho havia observat mai.

I per primera vegada, les imatges del Parker Solar Probe han mostrat com la pols còsmica comença a minvar a minvar a partir dels 11 milions de km del Sol i que aquesta disminució de pols continua constantment fins als límits actuals de les mesures de Parker a poc més de 6 milions de km del Sol.

Tots aquests treballs i descobertes són importantíssims per a protegir-nos del Sol, tant a la Terra com amb els satèl·lits i astronautes a l’espai. Problemes que estudia el temps espacial.

És increïble, fins i tot en condicions de mínim solar, com el Sol produeix molt més esdeveniments minúsculs de partícules energètiques del que no havíem pensat mai“, ha dit David McComas, investigador principal de l’instrument ISʘIS de la Universitat Princeton de Nova Jersey. . “Aquestes mesures ens ajudaran a desvelar les fonts, accelerar i transportar partícules energètiques solars i, en definitiva, protegir millor els satèl·lits i els astronautes en el futur“.

L’exploració del Sol a distancies curtes continuarà amb la sonda Parker. Tanmateix en febrer 2010 partirà cap al Sol la sonda europea Solar Orbiter, un dels instruments del qual s’ha fet parcialment a la Universitat de València. S’esperen anys emocionants.

Imatges:
NASA Goddard Space Flight Center

A Ciencia Cierta. El Sol: Una biografia de la nostra estrella

En clau de tertúlia parlem de les estrelles. Com es formen?, quina és la seua evolució?, com moren? Ens centrem també en les principals característiques de la nostra estrella, el Sol, amb especial atenció a les taques solars i les tempestes solars, i les repercussions que poden tenir aquestes últimes en la societat. Tot això de la mà de David Ibáñez, Fernando Ballesteros i Enric Marco.

Tertúlia científica en castellà de la ràdio CVRadio 94.5. 31 de gener 2019.

Per Player.fm

A Ciencia Cierta 31/1/2019 El Sol: Una Biografía de nuestra Estrella

Per ivoox

 

La ciència del 2018

L’any 2018 ha començat a caminar i les grans revistes científiques Science i Nature han fet les seues previsions del que ens oferirà la ciència durant aquest any.

La política científica no pot separar-se dels esdeveniments polítics que sacsegen el món. Així mentre el Regne Unit ha posat la directa per abandonar la Unió Europa i enguany començaran les negociacions per a la fase 2 del Brexit on s’hauran de determinar, entre altres, com s’articularan les futures col·laboracions dels científics britànics amb la resta dels científics europeus, els Estats Units s’enfronten a les eleccions de mitja legislatura. En aquestes s’elegiran la meitat de membres del Senat i de la Càmera de Representants. Si el republicans perden la majoria a les cambres a mans dels demòcrates, potser alguna de les decisions polèmiques de l’administració Trump en matèria medi-ambiental podrien revertir-se o congelar-se.
Per altra banda noves potències científiques com la Índia o la Xina continuen la lluita contra el canvi climàtic, promouen la cursa espacial i fan avanços ràpids en la recerca biomèdica.

Canvi climàtic

Aquest any els estats que van signar el Protocol de Paris l’any 2105 presenten el seu primer informe de com han començat a implementar les recomanacions de l’Acord per a que la temperatura mitjana del planeta no puge més de l’1,5-2,0 ºC per damunt dels valors de l’era preindustrial. Ho hauran de fer a la reunió de les Nacions Unides (2018 Facilitative dialogue) i serà interessant veure el que presenta l’Estat Espanyol que acaba de guanyar la batalla europea per l’Impost al Sol amb l’aval del Consell Europeu, que, recordem-ho, és només el club dels 28 estats de l’Unió. Ara caldrà convèncer el Parlament Europeu (més difícil) i la Comissió en la que el comissari d’energia és el polèmic polític espanyol Arias Cañete per que tinga l’aval complet d’Europa.

Al mes de setembre a l’estat de Califòrnia tindrà lloc una important reunió sobre canvi climàtic en suport a l’Acord de Paris, promogut pel governador de l’estat, el demòcrata Edmund Gerald “Jerry” Brown, Jr. Les idees negacionistes no són transversals als Estats Units i diversos estats i ciutats no comparteixen les idees absurdes del seu president.

Observació del cel

L’observació del cel eixamplarà els seus horitzons més que mai amb la nova finestra oberta pel descobriment de les ones gravitatòries. Aquest 2018 l’observació d’esdeveniments de xocs entre forats negres o estels de neutrons llunyans seran cada vegada més freqüents i, com no podia ser d’altra manera, cada vegada menys mediàtics.

Els esclats ràpids de ràdio són un fenomen astrofísic d’alta energia d’origen desconegut que es manifesta com un pols transitori d’emissió en ràdio i que dura només uns pocs mil·lisegons. Per la seua curta durada només se n’han pogut registrar fins ara unes poques dotzenes. Tanmateix la posada en marxa enguany del Canadian Hydrogen Intensity Mapping Experiment (CHIME), un revolucionari radiotelescopi permetrà observar-ne molts més i, potser, determinar quin tipus d’objecte els produeix.

Serà també en abril quan l’equip del telescopi Gaia presente el segon paquet de dades que ens donarà la posició o moviment de més de mil milions d’estrelles de la nostra Galàxia. Aquestes dades permetran fer estudis de l’estructura espiral de la Via Làctia, del moviment d’estrelles llunyanes i, potser, ajude a conéixer les germanes del Sol.

Segurament serà al llarg d’any any quan es donen a conéixer finalment les dades finals del gran experiment del Telescope Event Horizon, un projecte internacional d’observació conjunta de multitud de radiotelescopis arreu del món per observar el forat negre central de la nostra galàxia. Amb les dades conjuntes s’espera tindre la primera imatge real d’un forat negre.

Exploració espacial

Les agencies espacials treballaran de valent el 2018. Per ordre del president Donald Trump la Nasa ha de tornar a enviar astronautes a la Lluna, potser en una etapa prèvia per arribar a Mart, més enllà de 2030. Tanmateix son les agències asiàtiques les que si que hi arribaran enguany.

En els primers mesos del 2018 la nau Chandrayaan-2 tractarà, per primera vegada per a l’Índia, d’aterrar a la superfície lunar, mentre que el desembre Xina tractarà que dipositar el Chang’e-4 en la cara oculta de la Lluna.

En la resta del sistema solar també hi haurà moviment. En juliol, la sonda Hayabusa-2 de l’agència japonesa de l’espai (Jaxa) arribarà a l’asteroide Ryugu mentre que Osiris-Rex de la NASA explorarà l’asteroide Bennu a final d’any. Un dels objectius més importants d’aquestes missions serà el retorn de mostres d’aquests objectes celestes que arribaran a la Terra el 2020.

A l’estiu s’enviarà cap al Sol la sonda Parker Solar Probe (Solar Probe Plus), una sonda espacial de la NASA destinada a estudiat la corona exterior de la nostra estrella in-situ. S’hi acostarà a 8,5 radis solars (5,9 milions de quilòmetres) de la ‘superfície’ (fotosfera) del sol. Però aquesta serà només una petita sonda en nombre d’instruments en comparació a la sonda europea Solar Orbiter, en el disseny de la qual participa un grup d’investigadors de la Universitat de València. Aquest sonda es llançarà durant els primers mesos del 2019.

Redefinició unitats físiques

Les unitats de quatre unitats físiques seran redefinides a final d’any en la Conferència General de Pesos i Mesures a celebrar en Versailles en novembre.  Els delegats de 58 estats votaran per adoptar noves definicions de l’ampère, el kilogram, el kelvin i el mol. Ara s’hauran de basar en valors exactes de constants fonamentals i no en definicions arbitràries, com fins ara.

Google Lunar XPrize

L’empresa Google va dotar fa anys el premi Google Lunar XPrize amb uns 25 milions d’euros per a l’equip privat que, abans del 31 de desembre del 2017, primer aconseguirà fer aterrar a la Lluna una sonda amb un rover que es mogués almenys 500 m a la superfície i retransmetera a la Terra imatges d’alta definició. Com és obvi cap grup ho ha aconseguit, encara que cinc equips han pogut passar l’homologació per sortir a l’espai. Google ha decidit perllongar el termini fins el 31 de març pròxim. Veurem qui guanya aquesta peculiar cursa espacial.

Finalment seria bonic recordar durant 2018 els aniversaris redons dels científics i científiques més famosos. Enguany, per exemple, fa 150 anys del naixement d’Henrietta Swan Leavitt, 200 del de James Joule i 100 anys del teorema de Noether.

Bon any científic….

Figures.

1.- El CHIME (Canadian Hydrogen Intensity Mapping Experiment) és un nou radiotelescopi canadenc dissenyat per contestar les preguntes més importants de l’astrofísica i cosmologia.
2.- Mitjanes anuals (línies primes) i mitjanes de cinc anys (línies gruixudes) per a les anomalies de temperatura promediades sobre la superfície terrestre de la Terra i sobre la superfície del mar (línia blava) en la part de l’oceà lliure de gel. Wikipedia Commons.
3.- Hayabusa-2 de l’agència japonesa de l’espai (Jaxa). Courtesia d’Akihiro Ikeshita.
4.- Una esfera gairebé perfecta del silici ultra-pur,  part del projecte Avogadro, un projecte de Coordinació Internacional Avogadro per determinar el número d’Avogadro. Wikipedia Commons.

Solar Orbiter: la contribució valenciana

Un grup multidisciplinar d’investigadors de la Universitat de València està dissenyant instrumental per a la missió Solar Orbiter que l’Agència Espacial Europea i la NASA llançaran en 2018. L’objectiu és acostar-se al Sol i estudiar els fenòmens que es produeixen en la superfície i, fins i tot, en l’interior d’aquest.

És un dels grups d’investigació amb el qual col·labore i en que també cal commemorar la contribució de Vicent Domingo, lider del grup, i que va ser director científic de la primera missió d’observació de llarg termini del Sol, la missió SOHO que ara fa 20 anys a l’espai.

La televisió de la Universitat ha passat pel nostre laboratori per veure que fem i entrevistar els principals responsables.