El forat negre de la galàxia M87

Finalment ja tenim la imatge. Els científics de la col·laboració internacional Event Horizon Telescope (EHT) presentaren dimecres la que és la primera imatge d’un forat negre, concretament del que es troba situat al centre de la galàxia activa M87. La imatge mostra un anell brillant format a partir de les rajos de llum que surten del disc de matèria que envolta una zona fosca on s’hi troba el forat negre i que es dobleguen a causa de la intensa gravetat.

El dimecres 10 d’abril fou un dia de gran celebració en les diverses rodes de premsa celebrades simultàniament arreu del món per mostrar la gran fita científica d’aconseguir veure com és realment un d’aquests monstres estel·lars. Des de Washington, a la seu de la National Science Fundation, o des de Bruxel·les, des de la seu de la Comissió Europea i des de Madrid, a la seu del CSIC, entre altres indrets, els astrònoms que han col·laborat en el macro-projecte explicaven dimecres el seu treball.

D’aquest grup selecte d’investigadors dos són valencians: Iván Martí-Vidal, de l’Institut Geogràfic Nacional (IGN), que ha dissenyat els algorismes que van permetre combinar les dades de les antenes d’ALMA (l’element més sensible de l’EHT) amb la resta de radiotelescopis; és a més coordinador del grup de polarimetria (el principal objectiu del qual és estudiar el paper dels camps magnètics en les proximitats del forat negre) i Rebecca Azulay, investigadora postdoctoral que treballa actualment en el Departament d’Astronomia i Astrofísica i en l’Observatori Astronòmic de la Universitat de València.

Fotografia del Telescopi Espacial Hubble que mostra el doll de matèria expulsat d’M87 quasi a la velocitat de la llum, i que s’allunya fins a uns 5000 anys llum del nucli galàctic

Des de fa molts anys se sap que M87, situat a uns 53,5 milions de quilòmetres, és una galàxia activa. L’observació detallada de l’objecte mostra una gran variabilitat en ràdio, raigs X i raigs gamma i sobre tot presenta un doll de partícules accelerades d’almenys 5.000 anys llum de longitud que surt del seu centre i que apunta quasi directament cap a la Terra, amb una desviació molt menuda d’uns 17º.  Els models astrofísics actuals expliquen aquesta variabilitat per l’existència d’un forat negre supermassiu de milions de masses solars.  Donat que veiem pràcticament el centre de la galàxia de cara hauria de ser possible observar fàcilment que és el que està passant allí dins.

Però l’aspecte que té el forat negre central d’M87 no és fàcil de saber. La galàxia està molt lluny i l’objecte es tan “menut” com tot el nostre Sistema Solar. Necessitem, per tant, una resolució extraordinària per veure’n detalls. I la resolució d’un instrument depén de la longitud d’ona, en aquest cas ones de ràdio d’1,3 mm i és inversament proporcional a l’apertura, la grandària del radiotelescopi.  Quan més gran és el disc d’un radiotelescopi, més detalls podrem esbrinar. Tanmateix en aquest cas l’objecte és tan menut que un únic radiotelescopi no ens permet obtindre’n detalls. I, és per això que, per aconseguir la resolució necessària va caldre combinar els senyals obtinguts simultàniament de diversos radiotelescopis d’arreu del món per a fer-ne un virtual de la grandària de la Terra a través d’una tècnica anomenada interferometria de llarga base. D’aquesta manera s’aconseguí obtindre una resolució de 20 μas (20 milionèsimes de segon d’arc d’angle). Per fer-vos una idea clara del que significa seria com poder veure una pilota de tenis en la superfície de la Lluna.


Xarrada TED de Katie Bouman, una de de les desenvolupadores del software de l’EHT, on explica el procés que s’ha seguit per aconseguir la primera imatge d’un forat negre.

Durant uns dies d’abril de 2017, l’Event Horizon Telescope, la xarxa de huit radiotelescopis distribuïts al llarg del món que inclouen les antenes ALMA de Xile, l’antena IRAM del Pico Veleta, antenes a Hawaii, al Pol Sud, etc, observaren simultàniament dos objectes: Sagittarius A*, el forat negre supermassiu (4 milions de masses solars) situat al centre de la Via Làctia i la bèstia còsmica encara més massiva del centre d’M87, una galàxia activa situada a 53,5 milions d’anys llum. L’observació simultània va permetre reconstruir un telescopi de la grandària de la Terra. En aquesta observació i durant els següents  dos anys, 208 científics (enginyers, astrònoms, matemàtics, informàtics…) dels quals 23 són dones (un 11%) han recopilat les dades, les han coordinats, han fet algorismes per combinar les dades de cada telescopi, etc, per obtindre el que mai s’havia aconseguit abans: veure-li la cara a un forat negre. Fins ara en teníem proves indirectes de la seua existència però mai no havíem aconseguit veure’ls. I la imatge final s’assembla extraordinàriament al que preveien els models teòrics construïts a partir de la Relativitat General. Einstein tenia raó i les seus teories tornen a passar el test de l’experimentació.

L’entorn de la bèstia còsmica del centre d’M87, una galàxia activa situada a  53,5 milions d’anys llum, se’ns presenta com un anell brillant d’un 42 μas (42 milionèsimes de segon d’arc d’angle) format a partir de les rajos de llum que surten del disc de matèria que envolta una zona fosca on s’hi troba el forat negre i que es dobleguen a causa de la intensa gravetat. Un anell que gira en sentit horari quasi de cara a nosaltres amb una certa inclinació amb el resultat que la part inferior més enllumenada indica que és llum que ve cap a nosaltres mentre que la part superior més fosca s’allunya. Això és compatible amb la direcció del doll de material ejectat amb una inclinació de 17º respecte a l’observador (veieu imatge anterior del doll). Tanmateix l’inici del doll que es veu a gran distància no és visible en la imatge a conseqüència d’una resolució insuficient.

Al centre de l’anell s’observa una zona negra, que s’ha anomenat ombra del forat negre, que inclou l‘horitzó d’esdeveniments del forat negre central d’M87, la zona fronterera que l’envolta, a l’interior de la qual la gravetat és tan intensa que ni tan sols la llum té suficient velocitat per escapar-se’n. L’ombra és unes 2,5 vegades més gran que l’horitzó i, de moment, és el màxim que podem resoldre fins que no milloren les nostres tècniques.

El forat negre d’M87 és tan gran que el nostre sistema solar cabria perfectament dins del seu horitzó d’esdeveniments. Com que, a més a més, les observacions d’M87 han permés corregir a l’alça la massa del monstre còsmic que es troba molt endins de l’ombra i que ara s’estima que és uns 6500 milions de vegades més massiu que el Sol, podem imaginar-nos la compressió del material que permet encabir tants sols en un espai tan reduït.

Aquesta imatge tan buscada, aconseguida per la col·laboració internacional EHT, proporciona les proves més fortes fins a la data de l’existència de forats negres supermassius i obre una nova finestra a l’estudi dels forats negres, els seus horitzons d’esdeveniments i la seua gravetat.

La col·laboració internacional ha aconseguit una fita espectacular, que un company explicava gràficament ahir: Mira a un estel qualsevol del cel, en les millors condicions que pugues, i pensa que en el diàmetre aparent d’aquest puntet podries encabir una rere l’altra 10.000 còpies de la imatge del forat negre d’M87. Això han aconseguit.

I alguns dels que ho han aconseguit són amics i companys. Enhorabona.

I que ha passat amb el forat negre de la nostra galàxia? Com és que no ens han donat la imatge de l’objecte Sagitari A*?

Malgrat estar més prop resulta que és també molt variable i, a més a més, cal veure’l a través de la pols i gas del disc galàctic on es troba el Sistema Solar, amb la qual cosa resulta molt més problemàtic aconseguir una imatge neta semblant a la d’M87. Els científics ja estan treballant en algorismes que permeten reconstruir l’evolució temporal de la imatge, que podríem tenir en menys de cinc anys.

En el vídeo farem un viatge des de les antenes d’ALMA, mirant la nit estrellada, acostant-nos a la galàxia M87, observant les diverses imatges de la galàxia, del doll fins arribar a les proximitats del forat negre.

Finalment caldria destacar la repercussió mundial que ha tingut la conferència de premsa múltiple arreu del món. No només tots els diaris posaren la imatge de l’ombra del forat negre central d’M87 a la portada sinó que Google canvia el logo per remarcar la fita científica.

Per saber-ne més
Guía sencilla para entender la foto del agujero negro, Agencia SINC
Una astrònoma de la Universitat participa en la captura de la primera imatge d’un forat negre, UV.
First Images of a Black Hole from the Event Horizon Telescope. AAS Nova
La primera imagen de la sombra y el anillo asimétrico del agujero negro M87* gracias a EHT. La ciencia de la Mula Francis. Una explicació més física.

Entrevista a Iván Martí-Vidal en TVE 24 h. 11/4/2019

Imatges:

1. Imatge de l’ombra del forat negre d’M87. Col·laboració EHT.
2. El doll que emergeix del nucli galàctic d’M87 (NGC 4486). NASA and The Hubble Heritage Team (STScI/AURA)HubbleSite.
3.- Ubicació dels radiotelescopis de la col·laboració EHT.
4.- Alguns amics participants en EHT. Crèdit: Vicent Martínez.

Tot esperant desvelar l’aspecte d’un forat negre

En unes hores sabrem finalment quin aspecte té l’entorn d’un forat negre. En la roda de premsa simultània que es realizarà a diversos paísos del mon a partir de les 15 h de dimecres 10 d’abril, es presentaran les primeres imatges en ràdio del forat central de la Via Làctia i el de la galàxia activa M87 aconseguides amb l’Event Horizon Telescope.

L’Event Horizon Telescope, no és ben bé un únic telescopi, sinó una xarxa de huit radiotelescopis distribuïts al llarg del món que inclouen les antenes ALMA de Xile, l’antena IRAM del Pico Veleta, antenes a Hawaii, al Pol Sud, etc, que fa dos anys es coordinaren per observar simultàniament dos objectes: Sagittarius A*, el forat negre supermassiu (4 milions de masses solars) situat al centre de la Via Làctia i la bèstia còsmica encara més massiva del centre d’M87, una galàxia activa situada a  53,5 milions d’anys llum. L’observació simultània va permetre reconstruir un telescopi de la grandària de la Terra

Aquesta infografia detalla les ubicacions dels telescopis participants de l’Event Horizon Telescope (EHT) i del Global mm-VLBI Array (GMVA). El seu objectiu és representar, per primera vegada, l’ombra de l’horitzó de l’esdeveniment del forat negre supermassiu al centre de la Via Làctia, així com estudiar les propietats de l’acreció i les emissions al voltant del centre galàctic.

Durant el mes d’abril del 2017, nombrosos investigadors utilitzaren aquesta xarxa de telescopis per captar els senyals ràdio que provenen de l‘horitzó d’esdeveniments dels forats negres centrals d’aquestes galàxies, la zona fronterera que els envolta, a l’interior de la qual la gravetat és tan intensa que ni tan sols la llum té suficient velocitat per escapar-se’n.  L’anàlisi de les dades ha estat complex i després de dos anys en unes hores es presentarà al públic.

Que fins ara no hagem tingut una imatge de com son els forats negres no significa que no tinguerem una idea de com haurien de ser. Les lleis de la Física i en especial les de la Relativitat General de la Relativitat, proposada per Albert Einstein el 1915, ja preveuen com hauria de semblar l’horitzó d’esdeveniments i tot l’entorn del forat negre.

Imatge artística que mostra un forat negre supermassiu que gira ràpidament envoltat d’un disc d’acreció. Aquest disc prim de material consisteix en les restes d’una estrella semblant al Sol, que va ser trencada per les forces de marea del forat negre. Crèdit: ESO, ESA / Hubble, M. Kornmesser / N. Bartmann

Un forat negre és el resultat del col·lapse i concentració d’una quantitat ingent de material estel·lar que arriba a distorsionar l’espai-temps i produeix una singularitat, un punt en que la densitat és infinita. La gravetat és tan intensa que fins i tot la llum no és capaç d’escapar-se més enllà d’un radi o horitzó d’esdeveniments per la qual cosa els forats es veuen negres des de l’exterior. Aquesta frontera fa impossible treure informació de l’interior llevat de l’anomenada Radiació de Hawking.

Al seu voltant trobarem un disc de material calent que va caient en espiral cap al forat negre i en els forats molt energètic trobarem també uns dolls relativistes de gas calent expulsats perpendicularment al disc per l’intens camp magnètic. La llum que envolta el forat negre es pertorbat per l’intens camp gravitatori del forat negre i és distorsionada de manera que fins i tot la part del disc d’acreció de darrere del objecte, la més allunyada de l’observador és visible per la part superior

El vídeo de Hotaka Shiokawa mostra l’aparença que tindria el disc d’acreció d’un forat negre en una simulació de magnetohidrodinàmica general relativista (GRMHD) observat en ràdio. Els raigs de llum emesos des de la part interior del disc es produeixen abans de l’arribada al “telescopi” a causa de l’efecte gravitacional de la lent i produeixen les imatges distorsionades. El disc es veu des de 45º per sobre del pla equatorial del disc. El costat esquerre de la imatge és més brillant que el costat dret a causa de l’efecte radiant Doppler: la llum emesa per un objecte que es dirigeix cap a un observador és més brillant que la que s’allunya de l’observador. La part negra central és l'”ombra” del forat negre, que és el que l’Event Horizon Telescope intenta veure.

Segons la forma que presente la imatge de detall dels forats negres que s’ha obtingut amb les dades del Event Horizon Telescope (mireu imatge adjunta) es podran confirmar o rebutjar les diverses teories alternatives a la de la Gravitació d’Einstein o bé, com sempre ha passat fins ara, es reforçarà encara més la Relativitat General.

Simulació dels dolls (roig brillant) d’un forat negre i del disc d’acreció al seu voltant, amb imatges simulades de les tres formes potencials de l’ombra de l’horitzó de l’esdeveniment. Crèdit: ESO / N. Bartmann / A. Broderick / C.K. Chan / D. Psaltis / F. Ozel

També podrem conéixer molts altres aspectes encara pot clars d’aquests monstres còsmics, com ara la possible existència de púlsars en òrbita al voltant dels forats negres o la forma en que aquests emeten els dolls. Caldrà esperar unes hores.