La ciència del 2018

L’any 2018 ha començat a caminar i les grans revistes científiques Science i Nature han fet les seues previsions del que ens oferirà la ciència durant aquest any.

La política científica no pot separar-se dels esdeveniments polítics que sacsegen el món. Així mentre el Regne Unit ha posat la directa per abandonar la Unió Europa i enguany començaran les negociacions per a la fase 2 del Brexit on s’hauran de determinar, entre altres, com s’articularan les futures col·laboracions dels científics britànics amb la resta dels científics europeus, els Estats Units s’enfronten a les eleccions de mitja legislatura. En aquestes s’elegiran la meitat de membres del Senat i de la Càmera de Representants. Si el republicans perden la majoria a les cambres a mans dels demòcrates, potser alguna de les decisions polèmiques de l’administració Trump en matèria medi-ambiental podrien revertir-se o congelar-se.
Per altra banda noves potències científiques com la Índia o la Xina continuen la lluita contra el canvi climàtic, promouen la cursa espacial i fan avanços ràpids en la recerca biomèdica.

Canvi climàtic

Aquest any els estats que van signar el Protocol de Paris l’any 2105 presenten el seu primer informe de com han començat a implementar les recomanacions de l’Acord per a que la temperatura mitjana del planeta no puge més de l’1,5-2,0 ºC per damunt dels valors de l’era preindustrial. Ho hauran de fer a la reunió de les Nacions Unides (2018 Facilitative dialogue) i serà interessant veure el que presenta l’Estat Espanyol que acaba de guanyar la batalla europea per l’Impost al Sol amb l’aval del Consell Europeu, que, recordem-ho, és només el club dels 28 estats de l’Unió. Ara caldrà convèncer el Parlament Europeu (més difícil) i la Comissió en la que el comissari d’energia és el polèmic polític espanyol Arias Cañete per que tinga l’aval complet d’Europa.

Al mes de setembre a l’estat de Califòrnia tindrà lloc una important reunió sobre canvi climàtic en suport a l’Acord de Paris, promogut pel governador de l’estat, el demòcrata Edmund Gerald “Jerry” Brown, Jr. Les idees negacionistes no són transversals als Estats Units i diversos estats i ciutats no comparteixen les idees absurdes del seu president.

Observació del cel

L’observació del cel eixamplarà els seus horitzons més que mai amb la nova finestra oberta pel descobriment de les ones gravitatòries. Aquest 2018 l’observació d’esdeveniments de xocs entre forats negres o estels de neutrons llunyans seran cada vegada més freqüents i, com no podia ser d’altra manera, cada vegada menys mediàtics.

Els esclats ràpids de ràdio són un fenomen astrofísic d’alta energia d’origen desconegut que es manifesta com un pols transitori d’emissió en ràdio i que dura només uns pocs mil·lisegons. Per la seua curta durada només se n’han pogut registrar fins ara unes poques dotzenes. Tanmateix la posada en marxa enguany del Canadian Hydrogen Intensity Mapping Experiment (CHIME), un revolucionari radiotelescopi permetrà observar-ne molts més i, potser, determinar quin tipus d’objecte els produeix.

Serà també en abril quan l’equip del telescopi Gaia presente el segon paquet de dades que ens donarà la posició o moviment de més de mil milions d’estrelles de la nostra Galàxia. Aquestes dades permetran fer estudis de l’estructura espiral de la Via Làctia, del moviment d’estrelles llunyanes i, potser, ajude a conéixer les germanes del Sol.

Segurament serà al llarg d’any any quan es donen a conéixer finalment les dades finals del gran experiment del Telescope Event Horizon, un projecte internacional d’observació conjunta de multitud de radiotelescopis arreu del món per observar el forat negre central de la nostra galàxia. Amb les dades conjuntes s’espera tindre la primera imatge real d’un forat negre.

Exploració espacial

Les agencies espacials treballaran de valent el 2018. Per ordre del president Donald Trump la Nasa ha de tornar a enviar astronautes a la Lluna, potser en una etapa prèvia per arribar a Mart, més enllà de 2030. Tanmateix son les agències asiàtiques les que si que hi arribaran enguany.

En els primers mesos del 2018 la nau Chandrayaan-2 tractarà, per primera vegada per a l’Índia, d’aterrar a la superfície lunar, mentre que el desembre Xina tractarà que dipositar el Chang’e-4 en la cara oculta de la Lluna.

En la resta del sistema solar també hi haurà moviment. En juliol, la sonda Hayabusa-2 de l’agència japonesa de l’espai (Jaxa) arribarà a l’asteroide Ryugu mentre que Osiris-Rex de la NASA explorarà l’asteroide Bennu a final d’any. Un dels objectius més importants d’aquestes missions serà el retorn de mostres d’aquests objectes celestes que arribaran a la Terra el 2020.

A l’estiu s’enviarà cap al Sol la sonda Parker Solar Probe (Solar Probe Plus), una sonda espacial de la NASA destinada a estudiat la corona exterior de la nostra estrella in-situ. S’hi acostarà a 8,5 radis solars (5,9 milions de quilòmetres) de la ‘superfície’ (fotosfera) del sol. Però aquesta serà només una petita sonda en nombre d’instruments en comparació a la sonda europea Solar Orbiter, en el disseny de la qual participa un grup d’investigadors de la Universitat de València. Aquest sonda es llançarà durant els primers mesos del 2019.

Redefinició unitats físiques

Les unitats de quatre unitats físiques seran redefinides a final d’any en la Conferència General de Pesos i Mesures a celebrar en Versailles en novembre.  Els delegats de 58 estats votaran per adoptar noves definicions de l’ampère, el kilogram, el kelvin i el mol. Ara s’hauran de basar en valors exactes de constants fonamentals i no en definicions arbitràries, com fins ara.

Google Lunar XPrize

L’empresa Google va dotar fa anys el premi Google Lunar XPrize amb uns 25 milions d’euros per a l’equip privat que, abans del 31 de desembre del 2017, primer aconseguirà fer aterrar a la Lluna una sonda amb un rover que es mogués almenys 500 m a la superfície i retransmetera a la Terra imatges d’alta definició. Com és obvi cap grup ho ha aconseguit, encara que cinc equips han pogut passar l’homologació per sortir a l’espai. Google ha decidit perllongar el termini fins el 31 de març pròxim. Veurem qui guanya aquesta peculiar cursa espacial.

Finalment seria bonic recordar durant 2018 els aniversaris redons dels científics i científiques més famosos. Enguany, per exemple, fa 150 anys del naixement d’Henrietta Swan Leavitt, 200 del de James Joule i 100 anys del teorema de Noether.

Bon any científic….

Figures.

1.- El CHIME (Canadian Hydrogen Intensity Mapping Experiment) és un nou radiotelescopi canadenc dissenyat per contestar les preguntes més importants de l’astrofísica i cosmologia.
2.- Mitjanes anuals (línies primes) i mitjanes de cinc anys (línies gruixudes) per a les anomalies de temperatura promediades sobre la superfície terrestre de la Terra i sobre la superfície del mar (línia blava) en la part de l’oceà lliure de gel. Wikipedia Commons.
3.- Hayabusa-2 de l’agència japonesa de l’espai (Jaxa). Courtesia d’Akihiro Ikeshita.
4.- Una esfera gairebé perfecta del silici ultra-pur,  part del projecte Avogadro, un projecte de Coordinació Internacional Avogadro per determinar el número d’Avogadro. Wikipedia Commons.

La Setmana de la Ciència acaba. Una crònica personal

Després d’un any de treball, el dilluns 6 de novembre finalment arrancava la Primera Setmana de la Ciència de Gandia, organitzada pel CEIC Alfons el Vell, amb la UPV, Campus de Gandia i el Centre Internacional de Gandia, UV. Moltes reunions, molts mals de cap, renuncies i canvis d’activitats d’última hora, moltes dificultats que hem pogut superar amb esforç. No ha fallat pràcticament res i podem estar-ne ben contents. La programació completa es pot veure en aquest enllaç.

El matí del dilluns 6, la Setmana s’obria amb el Taller de Matemàtiques: Superfícies seccionades, impartit per Maria Garcia Monera del Departament de Didàctica de la Matemàtica, Universitat de València. D’una manera visual, pràctica i molt didàctica s’introduïa els estudiants en la geometria de les superfícies.

Per la vesprada, però, va ser quan es féu la presentació oficial de la Setmana. Enric Marco i Ximo Grau, membres del CEIC i coordinadors de la Setmana, juntament amb Josep Ángel Mas de la UPV, el Director del CEIC Lluís Miret i Emili Aura del CIG UV explicarem als assistents les intencions de la setmana que no és sinó tractar d’acostar la ciència que fan els nostres científics al públic en general, fer-los baixar de la torre d’ivori on es troben i que retornen a la societat allò que han rebut a través de les minses inversions de l’estat.

La sèrie de conferències per al públic en general s’obria amb la xarrada Mecánica cuántica, ¿realidad o verdad? a càrrec de Salvador Miret, investigador del CSIC a Madrid. Tractà d’introduir el món de la quàntica a través de nombrosos exemples. Ens relatà les dificultats d’entendre la física de les partícules elementals, intrínsecament indeterminista, a diferència de la física clàssica que és clarament determinista, en la que a cada causa li correspon un efecte. A més explica el concepte de mesura en física quàntica i les implicacions que aquest procés causa sobre l’objecte mesurat. En definitiva com deia Richard Feynman l’any 1965: “I think I can safely say that nobody understands quantum mechanics.”

Dimarts 7 començà amb el taller de geologia, Vols un fòssil, fes-lo tu mateix. en el qual els membres del Museu de Geologia de la Universitat de  València José Antonio Villena, Erica Boisset ensenyaren a construir amb motlles diversos fòssils. Una activitat manual, didàctica i amb el regal afegit d’endur-se l’obra a casa que féu gaudir els estudiants presents. La recreació de les estructures òssies o la cobertura dura, rígida i exterior que posseïen alguns animals del passat remot és una bona manera d’introduïr-se en el món de la paleontologia. I si a més a més es fa de la mà de l’equip del Museu de Geologia l’èxit estava assegurat.

 

La xarrada de la nit es dedicà a un dels grans problemes actuals que afronta la societat moderna com és el Canvi Climàtic. La temperatura del planeta creix sense parar des de principis del segle XIX i sabem que la causa és l’emissió de gasos d’efecte hivernacle. Andreu Escrivà, ambientòleg, membre de la Fundació del Canvi Climàtic ens presentà el seu llibre Encara no és tard. Claus per entendre i combatre el canvi climàtic, obra que rebé el  Premi Europeu de Divulgació Científica Estudi General 2016 (Unitat de Cultura Científica i de la Innovació Càtedra de Divulgació de la Ciència. Universitat de València). El debat posterior refermà la convicció que està en les nostres mans mitigar l’escalfament global d’origen antròpic amb una altra mobilitat, oblidant els combustibles fòssils, exigint de moltes maneres al governant l’aplicació del protocol de Paris.

Dimecres 8 la jornada es dedicà completament a la física des de diversos punt de vista. Si al matí el taller de física Posa les mans en la física realitzat per les professores Chantal Ferrer i Ana Cros, del Departament de Física Aplicada de la Universitat de València, féu gaudir de valent els estudiants de l’escola que s’hi aplegaren, amb diversos experiments que mostraven la simplicitat i alhora la bellesa de les lleis de la natura, amb experiències de levitació, magnetisme, òptica i d’altres, a la nit, Antonio Torres, enginyer aeronàutic i ex-entrenador d’astronautes de l’Agència Espacial  Europea, ens feu cinc cèntims en Viajes espaciales tripulados de l’activitat dels astronautes, de l’enginy dels enginyers per enlairar coets gegantescos per accedir a l’espai, i que s’hi fa i com es viu a l’únic lloc habitat actualment a l’espai, l’Estació Espacial Internacional. El col·loqui posterior versà sobre les dificultats per viatjar a Mart a causa de la radiació de l’espai, i dels problemes de salut de la vida a l’espai, com ara la pèrdua òssia d’1% mensual.

Dijous 9 l’activitat de la vesprada es traslladà al restaurant Visconti, al carrer Sant Francesc de Borja, 26. Allí amb el format de Bar de ciències Rocío Barragán, Dra. en Nutrigenètica i Nutrigenòmica. Investigadora del CiberObn en el grup EPIGEM de la Universitat de València conversà amb el públic assistent, sobre La dieta mediterrànea: l´alternativa més saludable tot moderat per la periodista Puri Naya de Ràdio Gandia. Una quarantena de persones participà activament en el debat i engegà un animat col·loqui amb la investigadora. Les nombroses preguntes anaren des del nombre d’ous òptims a la setmana, al problema de les al·lèrgies alimentàries, de la bondat de la llet en edat adulta, de la dieta dels vegans, etc… Una experiència al restaurant que caldrà repetir.

Finalment el divendres 10 la Setmana de la Ciència es tancà amb la xarrada del Catedràtic d’Estadística de la Universitat de València José Miguel Bernardo que abordà l’interessant problema de La presa de decisions amb informació insuficient. Al llarg de la vida tots hem hagut d’afrontar aquest problema, des de comprar un cotxe o una casa fins a trobar parella. El matemàtic ens sistematitza el problema i, d’una manera senzilla amb exemples quotidians, ens explicà les eines necessàries per prendre la decisió correcta en moments delicats.

En definitiva la Setmana de la Ciència ha transcorregut perfectament. Tots els tallers del matí s’han omplert mentre que la sala on s’han fet les xarrades de la vesprada ha estat plena tots els dies, amb una mitjana d’assistència d’unes 60 persones.

A partir d’ara ja pensem en la Setmana de la Ciència de Gandia 2018. Moltes gràcies als participants en l’organització i a tots els assistents als actes.

Nota: No he comentat les activitats del matí organitzats per la UPV Campus de Gandia ja que no he pogut assistir-hi i, per tant, no puc donar més informació. Tanmateix m’han dit que també ha funcionat perfectament. Enhorabona, doncs.

ÀLBUM DE LES CONFERÈNCIES DE LA SETMANA DE LA CIÈNCIA

ÀLBUM DE FOTOS DE LA SETMANA DE LA CIÈNCIA

La Setmana de la Ciència ja està ací. En parlem a TeleSafor

Setmana de la Ciència de Gandia

Més informació a:
Setmana de la Ciència de Gandia: programació

La ciència del 2017

640px-Cassini_Saturn_Orbit_InsertionCom cada any les grans revistes científiques com Science i Nature fan les previsions de la ciència que vindrà en aquest any que comença.

2017 és l’any en que Gran Bretanya aplicarà l’article 50 del Tractat europeu i abandonarà la Unió Europea. Creix, per tant, la preocupació entre els científics britànics, i europeus en general, de com afectarà això a la ciència europea.

I a partir del 20 de gener Donald Trump exercirà ja com a nou president dels Estats Units d’Amèrica. Els científics nord-americans també es troben amoïnats en com els afectaran les idees radicals i moltes vegades acientífiques del multimilionari president. Les seues declaracions mostren un menyspreu per la ciència que és alarmant en una persona amb tan alt càrrec.

Dins d’aquestes restriccions s’ha de moure la ciència enguany. Us faig un resum de les accions més importants en física i astronomia a partir de la llista que en fa la revista Nature.

Canvi climàtic

El nou president electe dels EEUU s’ha declarat clarament en contra de les mesures contra el canvi climàtic que havia signat Barak Obama. El nomenament de Scott Pruitt, el fiscal general d’Oklahoma, un declarat i actiu negacionista, com a nou director de l’Agència per a la Protecció del Medi Ambient no fa preveure res de bo.

La Xina, per contra, sembla que s’ha pres seriosament la lluita contra el canvi climàtic després de severs episodis de contaminació en les grans ciutats com Beijing (dades en directe des de l’ambaixada dels EEUU). Xina pretén crear enguany un sistema de drets d’emissió com existeix a Europa. Les emissions globals semblen haver-se estabilitzat els últims tres anys i alguns científics tenen l’esperança que fins i tot comencen a baixar enguany ajudats pel fort impuls que Xina vol donar a les energies verdes. I, mentrestant a casa nostra, tenim l‘opressió de l’impost al Sol.

Exploració espacial

També la Xina continuarà amb l’exploració de la Lluna amb els exploradors Chang’e 5. Aquest any es recolliran dos quilos de roques i sol lunars i es retornaran a la Terra. Seran les primeres mostres lunars que s’analitzen als laboratoris terrestres des del final de la missió Apollo en els anys 70.

I després de 20 anys orbitant Saturn la nau de la NASA Cassini serà destruïda el 15 de setembre en submergir-se en la densa atmosfera saturniana.  En els darrers mesos que li queden, es dedicarà a explorar els anells interiors del planeta i donarà informació detallada d’aquells enigmàtics i bells elements així com de les estructures atmosfèriques de Saturn.

Computació quàntica

Aquest any sembla que serà el que ens mostre les grans possibilitats de la computació quàntica. Els físics esperen que enguany es puguen fer en els ordinadors quàntics càlculs impossibles de fer en els ordinadors clàssics (de silici). Google, com no podia ser d’altra manera, i moltes altres companyies estan clarament compromesos en assolir aquest repte. Tanmateix Microsoft treballa en una alternativa coneguda com a Computació quàntica topològica, (veieu també l’article de la Mula Francis:  Hacia la computación cuántica topológica gracias a los fermiones de Majorana) que codifica la informació en els moviments dels objectes (partícules) en materials.

Donant llum a la foscor

L’èxit de l’observatori ALMA, conjunt de 66 radiotelescopis que poden observar simultàniament un mateix objecte celeste, ha revolucionat la visió que teníem de molts camps de l’astrofísica. Enguany es vol anar un pas més enllà en l’observació de l’horitzó d’esdeveniments d’un forat negre, la capa més profunda observable d’aquest tipus de monstre estel·lar. En abril, nou radiotelescopis, entre ells ALMA, formaran temporalment una xarxa de telescopis terrestres per formar un observatori de grandària planetària anomenat Event Horizon Telescope. L’objectiu és observar Sagitari A*, el forat negre supermassiu de 4 milions de masses solars que es troba al centre de la Via Làctia. Els objectius són testejar la Teoria de la Gravitació, entendre el fenomen del disc d’acreció al voltant del forat negre i la formació i col·limació del doll central.

L’observació de les ones gravitatòries causada per grans objectes compactes en col·lisió continuarà als observatoris LIGO als EEUU però també a l’observatori europeu Virgo, situat a Pisa. Enguany els dos observatoris faran la primera observació conjunta.

Nové planeta

Fa un any els astrònoms Batygin i Brown proposaren l’existència d’un nové planeta al Sistema Solar. L’existència d’un nou planeta d’unes 10 masses terrestres i un període orbital al voltant del Sol d’uns 20000 anys es podria concloure a partir de les òrbites estranyes dels objectes 2012VP113 i Sedna del cinturó de Kuiper. Enguany les observacions sistemàtiques del suposat objecte poden finalment donar el seu fruit. Qui serà el descobridor del nové planeta? Michael E. Brown?

I enguany també la NASA llançarà un nou buscador de planetes extrasolars, TESS, Transiting Exoplanet Survey Satellite. L’anterior buscador llançat el 2009, Kepler, ja està treballant fora de les seus possibilitats i necessita un recanvi.

Imatge: Representació artística de Cassini sobre els anells de Saturn. NASA.

Sobre el descobriment dels púlsars per Jocelyn Bell

Jocelyn-Bell-Burjassot

Fa uns dies l’astrofísica nord-irlandesa que descobrí els púlsars passà per la Universitat de València invitada per la Facultat de Física i pel departament d’Astronomia i Astrofísica. Durant els dos dies que ha passat entre nosaltres, Jocelyn Bell ha demostrat la seua simpatia, intel·ligència i sentit de l’humor.

El dimecres 10 de febrer, en una conferència  tècnica, Reflections on the discovery of pulsars, la investigadora Jocelyn Bell Burnell, professora visitant d’Astrofísica a la Universitat d’Oxford (Regne Unit), recordà la història que dugué al descobriment dels púlsars (fonts de ràdio polsants) quan ella estava realitzant el doctorat. Ja vaig contar la interessant història en l’apunt Jocelyn Bell, descobridora dels púlsars, ens visita i el motiu pel qual el premi Nobel de Física el va rebre el seu director de tesi Antony Hewish i ella no. Bell-pulsars

Cada dia recollia 30 metres de dades en registre de paper en el detector que havia estat construïnt durant dos anys. Per cobrir tot el cel calien quatre dies i 120 metres de paper. Però ella es va adonar que un senyal ràpid i repetitiu ocorria durant 0.5 cm de paper cada 400 metres! El senyal del 6 d’agost de 1967 va ser determinant. No era cap senyal terrestre sinó que venia de dalt ja que sempre apareixia a la mateixa zona del cel. Com que el senyal durava tan poc en el paper, calia més resolució i això volia dir que el rotllo de paper havia de córrer més ràpid. Però llavors en 20 minuts s’acabava el material d’escriptura….

CP1919Com a malnom li posaren LGM1 (Little Green Men) ja la hipòtesi d’intel·ligència extraterrestre no estava descartada. Però en repassar els centenars de metres de dades en paper, Jocelyn descobrí dos senyals més del mateix tipus, LGM2 i LGM3 i això havia de ser natural. La nomenclatura ja era més aviat un acudit.

Ràpidament se n’adonaren que el senyal LGM1 o CP 1919, com es va anomenar després, era produït per un objecte menut ja que els polsos eren molt curts i al mateix temps l’objecte era molt energètic ja que els polsos no semblaven perdre energia. A més a més estava situat a més de 200 anys llum de distància i no mostrava cap efecte Doppler, la variació de la freqüència causada pel moviment del cos. No era, per tant un planeta en òrbita al voltant d’un estel. Va arribar el moment de posar nom a aquest objecte tan estrany i, com que semblava que era un estel que emetia polsos en ràdio, li posaren púlsar (pulsating radio star), cosa que no agradà gens a la casa de rellotges Pulsar que, poc després volgué demandar als astrònoms nord-americans.

LGM1-3Sembla ser que els senyals polsants en ràdio que emeten aquests objectes van ser observats abans però no se n’adonaren de la seua importància científica. Jocelyn Bell recordà que l’oficial Charles Schisler, encarregat dels radiotelescopis de 50 metres d’una estació d’alerta de míssils de la USAF a Alaska, detectà un senyal intens en la nebulosa del Cranc l’estiu de 1967. Ara sabem que era el senyal del púlsar que s’hi troba dins. Però com que la seua feina no era l’exploració del cel i, a més a més, treballava a una instal·lació secreta, es considerà com una simple interferència celeste.

La història del descobriment dels púlsars és apassionant. Té tots els elements per treure’n conseqüències sobre el paper de les dones en ciència. Des de la passió pel treball ben fet i la curiositat que demostrà Jocelyn Bell en adonar-se de la importància del petit senyal perdut enmig de centenars de metres de paper, a la injustícia de no rebre el Nobel per la descoberta fins al paper secundari que tingué en els primers temps per ser dona i doctoranda.

Els Nobels tenen una llarga tradició en oblidar els predecessors de les tècniques i descobriments premiats, especialment si són dones. L’article del New York Times No Nobel Prize for Whining en fa un seguiment llarg i, és clar, parla del cas de Jocelyn Bell, l’estudiant de doctorat que descobrí els púlsars i com l’eminent astrònom Fred Hoyle montà en colera per l’omissió.

Imatges:

1.- Jocelyn Bell al Campus de Burjassot. Enric Marco
2.- Jocelyn Bell explica els senyals que descobrí. Enric Marco
3.- El senyal de CP 1919 en el registre de paper.
4.- LGM1 i LGM3 amb major resolució.

El Pare Nadal des dels ulls de la ciència

643px-Jonathan_G_Meath_portrays_Santa_Claus

Aquesta nit arriba el Pare Nadal a les cases on hi ha nens. Si s’han portat bé rebran regals però si no ha estat així tot els que trobaran per a ells al costat de l’arbre serà un tros de contaminant carbó negre.

Però, com que aquesta casa és un bloc de ciència, ens podríem plantejar si, als ulls de la ciència, el Pare Nadal té alguna possibilitat real de repartir en una sola nit totes les joguines que els xiquets li han encomanat. Quim Monzó ja ho va plantejar d’una manera genial en Com mor el pare Noel dins del recull d’articles Del tot indefens davant dels hostils imperis alienígenes (1998).

Molts d’altres s’han fet la mateixa pregunta i ara, fins i tot ho podem veure en aquest vídeo en anglés (amb subtítols en castellà). El pare Nadal, viatjant més ràpid que les naus espacials més ràpides, quedaria cremat pel fregament en l’atmosfera terrestre…

IFLScience (I fucking love science) també publica un divertit vídeo en que demostra que l’enorme energia cinètica que tindria el trineu del Pare Nadal destruiria la nostra casa en impactar contra ella, amb la vaporització consegüent del vell entranyable del nord, de la nostra vivenda i de tots els seus habitants.

Ara bé, si contem això als nostres xiquets s’emportaran una desil·lusió enorme. Tanmateix, als ulls de la ciència, encara hi ha una possibilitat que el Pare Nadal deixe regals als nens al peu de l’arbre sense morir en l’intent.  El vídeo ens explica que li passarà utilitzant la física clàssica. Però que passaria si apliquéssem la física quàntica al seu viatge anual? A més a més s’ha de considerar que la velocitat del trineu és alta, 3700 km/s segons el vídeo, una centèsima part de la velocitat de la llum, de manera que algun efecte relativista hauria de tindre’s en compte.

Christmas_tree_in_TexasCom aquest estudi explica, es coneix amb moltíssima precisió la velocitat dels rens a través de l’aire sec de desembre en l’hemisferi nord. També es coneix amb molta exactitud la massa del Pare Nadal, el seu trineu i els rens que l’arrosseguen. Respecte a la direcció i sentit del vol, viatjarà d’est a oest, ja que haurà de començar a repartir joguets en Nova Zelanda i Austràlia, primers llocs de la Terra on es fa fosc la Nit de Nadal.

Per tant, coneixem amb excel·lent precisió el vector moment cinétic (p = m.v),  el mòdul del qual és el producte de la massa per la velocitat del trineu i dels seus ocupants. Si ara apliquem el Principi d’Incertesa de Heisemberg, que postula que no es pot saber, simultàniament i amb total precisió,  la posició i el moment d’una partícula, llavors podríem resoldre el problema del repartiment de joguines.

Santa_Claus_EcineticCom que el moment cinètic és molt ben conegut no podrem saber del cert on es troba Santa Claus en cada instant. En altres paraules, el Pare Nadal està “difuminat” sobre la superfície de la Terra, de forma anàloga a com l’electró està “difuminat” a una certa distància del nucli de l’àtom. Per tant, literalment pot trobar-se a tot arreu en un moment donat.

Per tant, és perfectament possible que Santa Claus existisca i repartisca tots els regals en la nit de Nadal.

Així que, xiquets, xiquetes, grans i grandetes siguem bons que, potser, encara veiem al Pare Nadal entrar pel fumeral aquesta nit.

Bon Nadal

Imatge:

1.- Santa Claus. Jonathan G Meath, Wikimedia Commons.
2. Un arbre de Nadal en una casa a Texas. Angr, Desembre 1997.
3.- El Pare Nadal i els rems i la seua energia cinètica. Del vídeo d’IFLScience.

100 anys de relativitat

Estatua_de_Einstein._Parque_de_Ciencias_Granada

El 25 de novembre de 1915, Albert Einstein, que ja havia revolucionat la física deu anys abans amb la Teoria de la Relativitat Especial, va presentar a l’Acadèmia Prussiana de les Ciències, a Berlín, l’extensió d’aquesta teoria, la seua Teoria de la Relativitat General. Potser no som conscients de les portes científiques i tecnològiques que aquest treball va obrir al progrés de la humanitat, però sense aquest avanç científic el món en que vivim seria ben diferent.

Einstein no havia quedat del tot satisfet amb la seua teoria de la Relativitat Especial l’any 1905. S’havia eliminat el concepte de simultaneïtat en l’espai: un objecte tenia un temps propi depenent de la seua velocitat. És a dir, el temps d’un objecte mòbil es retarda a mesura que la seua velocitat s’acosta a la velocitat de la llum. No hi ha un temps universal per a tots els observadors com preveu la física clàssica. Tanmateix els objectes reals es mouen en l’espai entre grans masses com les dels planetes, del Sol i de les estrelles. Que passava si s’incorporava la gravetat a la teoria de la relativitat especial? És a dir, calia construir una teoria de la gravitació relativista.

Einstein va trigar uns deu anys en poder contestar aquesta pregunta, enmig de terribles problemes familiars. Però així com en la teoria del 1905 les formules que l’expliquen són ben senzilles i fàcils d’entendre, les equacions de la Relativitat General que va exposar per primera vegada a l’Acadèmia Prussiana de les Ciències són d’una complexitat enorme.

Einstein-equationsPer als lectors d’aquest apunt només ens cal entendre que el que aquestes equacions ens diuen  són l’equivalència entre la matèria-energia de l’Univers i la seua geometria. La part esquerre de la igualtat (on estan les R) ens indica com es comporta l’espai-temps, com es deforma, quin és el camí que segueix la llum, mentre que la part dreta (amb al G, T, c…) ens dóna el contingut matèria i energia de l’Univers. Dit d’una altra manera, la matèria deforma la geometria de l’univers, mentre que la forma de l’espai-temps indica com s’han de moure els objectes. Per tant la Teoria de la Relativitat General és una nova Teoria de la Gravetat, que ha fet més general  la teoria de la Gravitació de Newton.

Parafrasejant John Wheeler, la Teoria de la Relativitat General d’Einstein pot resumir-se d’aquesta manera: l’espai-temps diu a la matèria com ha de moure’s; la matèria diu a l’espai temps com ha de corbar-se.

ch23img3lanvaldfnv

La teoria de la Relativitat General va tindre un enorme èxit des que fou anunciada. Aconseguí explicar el moviment anòmal de Mercuri, que fins aquell moment portava de cap els astrònoms. El periheli del planeta, el punt més pròxim al Sol, no està en un punt fixe en l’espai sinó que va precessant (dibuix dreta). En la marc de la teoria de la Gravetat de Newton l’òrbita ha de ser estable (dibuix esquerra) i, per tant, aquest fenomen no tenia 3cfSAexplicació. Einstein aconseguí explicar-ho com a resultat de la deformació de l’espai-temps causat per la gran massa solar.

L’experiment, però, que confirmà que la teoria d’Einstein era correcta va ser comprovar que el camí que segueix la llum que prové de les estrelles es corba en presència d’una gran massa. Aquest desplaçament de la posició de les estrelles es comprovà en l’observació de l’eclipsi de Sol de 1919. Una vegada amagat el Sol darrere de la Lluna, les estrelles del voltant eren visibles i podien ser fotografiades. Es comprovà que no estaven en la seua posició correcta sinó desplaçades. Per tant la llum es corba en presència d’una massa. Aquesta confirmació de la teoria de la gravetat d’Einstein fou tan espectacular que aparegué en portada dels principals diaris del món. L’experiment s’ha fet múltiples vegades. Una Cassini-science-brprova d’alta precisió de la bondat de la Relativitat General es va realitzar fa uns anys aprofitant l’alineació de la sonda Cassini que està a Saturn, el Sol i la Terra. Els senyals de ràdio enviats entre la Terra i la sonda (ona verda) es va retardar i desviar per la deformació de l’espai-temps (línies blaves), a causa de la massa del Sol.

Però la exactitud de la teoria d’Einstein s’ha confirmat també en el fenomen de les lents gravitacionals. Galàxies massives deformen l’espai temps i fan que la imatge d’altres galàxies més llunyanes apareguen deformades i amplificades.  Moltes vegades aquestes galàxies apareixen com a filaments corbats formant una espècie d’anell de llum.

Una de les prediccions de la Teoria de la Relativitat encara no ha estat totalment confirmada. En principi les masses en moure’s han de provocar unes ones de l’espai-temps. Aquestes encara no han estat observades però diversos experiments estan ja preparats per observar-los abans que s’acabe la dècada, segons ens asseguren els experts. De moment només se les ha detectat de manera indirecta en el moviment d’estels pulsars binaris. Per exemple, només l’existència d’aquestes ones gravitacionals pot explicar el moviment del púlsar binari PSRpulsar B1913+16. Les dues estrelles de neutrons en òrbita estan convergint a poc a poc a causa de la pèrdua d’energia per radiació gravitatòria, cosa que farà que el sistema col·lapse en uns 300 milions d’anys.

La Relativitat General ens ha permés explicar l’Univers com un tot, el seu origen i la seua evolució, el que en diem Cosmologia. Però també ha permés explicar els objectes de gran massa, els objectes compactes com ara els forats negres, els estels de neutrons i la física de la gravetat extrema. A més a més ha tingut un enorme impacte en la societat. Per exemple, l’extrema precisió del GPS no seria possible sense tindre en compte els efectes relativistes. En aquest article també podreu veure uns altres curiosos efectes conseqüència de la relativitat.

Finalment recordar-vos que la pel·lícula Interstellar de Christopher Nolan (2014) utilitza de manera notable i acurada els efectes predits per la Relativitat d’Einstein per desenvolupar la trama. Si no l’heu vista encara no badeu. Seria un bonic homenatge a la grandiosa figura d’Einstein.

Figures:
1.- Estàtua d’Albert Einstein a l’entrada del Parque de las Ciencias de Granada.
2.- Equacions d’Einstein.
3.- Que significa cada terme de les equacions d’Einstein.
4.- Precessió del periheli de Mercuri.
5.- Experiment de la deflacció de la llum realitzat amb la sonda Cassini.
6.- Esquema del pulsar doble PSR B1913+16.

Parlant de la llum a Quart és Ciència

És admirable la feina que fa l’associació cultural de Quart de Poblet (l’Horta) Quart és Ciència per divulgar i impulsar el coneixement de la Ciència en la societat per tal que siga considerada com una part de la cultura humana.

Com ells mateixos exposen en la motivació de l’associació:

És fàcil comprovar que la Ciència, malgrat haver influït poderosament en el benestar de les nostres vides, està marginada de la majoria de les celebracions culturals que se celebren en la nostra població. És com sí la Ciència no pertanyera al que generalment entenem per Cultura, com sí estiguera fora d’aqueix àmbit de la creativitat humana.

QuartesCiencia01

No obstant açò, la Ciència en general és, possiblement, el major assoliment cultural i el major avanç intel·lectual de l’espècie humana. Cert que té una ambivalència és les seues manifestacions, doncs, els seus avanços són a voltes utilitzats no per al benestar i la construcció d’un món millor, sinó per al contrari. Hem de recordar, com a al·legat a favor de la Ciència, que el seu desenvolupament depèn dels científics, però la seua aplicació pràctica correspon a la societat que està dirigida per la política, no per la Ciència, i en aquest sentit tots tenim una mica de responsabilitat en la utilització que d’ella es faça. Potser per açò la informació és la millor arma que poden disposar els ciutadans per a evitar que es faça un mal ús de la mateixa.

El que pretenem a Quart de Poblet, és divulgar els aspectes positius de la Ciència, com a activitat històrica, cultural i intel·lectual humana….

L’activitat principal de Quart és Ciència és l’organització de la Setmana de la Ciència a principis de cada mes de novembre. Enguany s’acaba de celebrar la IV Setmana de la Ciència amb un programa ben abellidor.

Quartesciencia04Entre les interessants xarrades que s’han fet caldria destacar la de Carmen López Moreno (Directora del Observatorio Geofísico Central, Madrid) que ens parlà dels sismes i volcans, centrant-se en que ella ha estudiat especialment, el volcà submarí de El Hierro en “Cuando la Tierra ruge y tiembla”. Carlos López-Otín, Catedràtic de Bioquímica i Biologia Molecular en la Universitat de Oviedo ens parlà sobre la seua recerca en les malalties associades als gens en “Vida y enfermedad en el planeta de los genes” mentre que Mª Ángeles Bonmatí Carrión (Bióloga. Doctora en Fisiologia, Universitat de Múrcia) ens explicà els efectes de la contaminació lumínica sobre la salut humana en la xerrada “Conociendo nuestro reloj biológico: pon en hora tu salud y la del medio ambiente”.

Donat que enguany és l’Any Internacional de la llum, per tancar la setmana d’actes, es va organitzar un debat sobre la llum en que vaig participar com a ponent junt amb d’altres físics i enginyers. Vos deixe unes poques fotos.

Al principi d’aquest apunt podeu veure el vídeo d’invitació a les activitats de la IV Setmana de la Ciència de Quart. Parla de contaminació lumínica des de la visió d’una xiqueta.

Fotos: Són les fotos que podeu veure al facebook de Quart és Ciència.

Nobel de Física 2015: la camaleònica partícula fantasma

NobelPrize2015

Avui s’ha donat a conéixer el Premi Nobel de Física. Els guardonats d’enguany han estat el físic japonés Takaaki Kajita i el canadenc Arthur B. McDonaldpel descobriment de les oscil·lacions del neutrino, que ha portat a demostrar que els neutrinos tenen massa“.

Segurament la majoria de la gent no sabrà que són els neutrinos.  Els neutrinos o neutrins són una mena de partícula fantasma, sense càrrega elèctrica (neutra) i, amb molt poca capacitat d’interacció amb la matèria. La conseqüència de tot açò és que són partícules molt difícils de caçar pels detectors. Tot i això, els neutrinos són, llevat de les partícules lluminoses, els fotons, les partícules més abundant de l’univers.

Els neutrinos es creen com a subproducte de les reaccions nuclears en l’interior de les estrelles, en l’explosió final de les estrelles massives en forma de supernova, en les centrals nuclears terrestres o en l’alta atmosfera terrestre a causa dels raigs còsmics. Cada segon milers de milions de neutrinos que provenen del Sol travessen el nostre cos, o fins i tot el planeta Terra, sense cap interacció. Com podríem caçar-los?

L’any 1967 Raymond Davis va idear un mètode de detecció. El clor-37 (l’isòtop 37Cl) és capaç de captar un neutrino per convertir-se en argó-37 (l’isòtop 37Ar), d’acord amb l’equació següent:

{}^{37}\mathrm{Cl}+\nu_e \rightarrow {}^{37}\mathrm{Ar}+\mathrm{e}^- \,

L’37Ar és radioactiu i, això permet detectar la seua presència després de la interacció amb un neutrino. Tanmateix, la interacció del 37Cl amb els neutrinos és molt baixa.

Per augmentar la possibilitat de captació de neutrinos se situà en una antiga mina d’or de Dakota del Sud, un immens tanc de 38000 litres de tetracloroetilè, un líquid amb quatre àtoms de clor, barat i utilitzat en tintoreries.

Per altra banda, des dels anys seixanta ja es tenia una teoria bastant sòlida de com es genera l’energia del Sol en el seu interior. Just en el cor de la nostra estrella, una reacció de fusió nuclear converteix un gas lleuger, l’hidrogen, en un gas més pesant, l’heli, amb l’emissió de fotons de gran energia (raigs gamma), neutrinos i d’altres partícules. Aquest cicle protó-protó és el procés energètic més important en estrelles de la grandària del Sol o menors. Els científics han calculat teòricament el nombre de neutrinos creats en aquestes reaccions nuclears que són la causa de la brillantor del Sol.

Però quan es comptaren els neutrinos capturats en el tanc de la mina d’or se n’adonaren que només s’hi detectava la tercera part dels esperats. Alguna cosa havia fallat. Potser no era correcta la teoria de les reaccions de fusió del nucli del Sol? És el que va rebre el nom del Problema dels neutrinos solars, un veritable mal de cap per als astrofísics i físics nuclears durant els anys 80 del segle passat.

L’experiment de la detecció dels neutrinos en tancs subterranis s’ha repetit arreu del món, al detector del Gran Sasso, a Itàlia, al Caucas, a Rússia, als detectors japonesos Kamiokande i Super-Kamiokande i sempre han mostrat una manca de neutrinos. Qué és el que fallava? Era un problema d’astrofísica, en que no s’havien explicat correctament les reaccions nuclears solars o era un problema de la física de partícules?

neutrinoD’acord amb el Model Estàndard de la física de partícules hi ha tres tipus de neutrinos, neutrinos electrònics νe, neutrinos muònics νμ i neutrinos taònics ντ. Cadascun d’ells està relacionat amb una partícula carregada, l’electró, el muó i el taó.
El Sol només produeix neutrinos electrònics i per això tots els detectors terrestres estaven dissenyats per detectar aquests i no els altres.

Donat que a la Terra només es detectava un terç dels neutrinos solars (neutrinos electrònics, νe), ¿no podria ser que els neutrinos variaren de sabor, passant d’electrònic a muònic i taònic en el seu llarg viatge cap al nostre planeta? ¿No podrien oscil·lar entre els distints tipus de neutrinos?

SudburySi s’acceptava que aquesta idea de les oscil·lacions era correcta, això implicava que el neutrino tenia massa, petita però apreciable. Però caldria demostrar-ho experimentalment. Això és el que han fet el físic japonés Takaaki Kajita i el canadenc Arthur B. McDonald en els seus respectius treballs.

El japonés Takaaki Kajita ha treballat en el detector Super-Kamiokande estudiant els neutrinos muònics (νμ) produïts per la radiació còsmica en l’alta atmosfera terrestre. I demostrà que els que venen de la part de davant del detector eren més nombrosos que els que venien per la part de darrere, els que havien travessat tota la Terra i han tingut més temps per a oscil·lar. Per tant, part dels neutrinos muònics (νμ) s’havien convertit en un altre tipus de neutrino.

El canadenc Arthur B. McDonald ha treballat al Sudbury Neutrino Observatory. El detector tanc està ple d’aigua pesada, una aigua amb un isòtop de l’hidrogen més massiu i està dissenyat per detectar els neutrinos electrònics que provenen del Sol. Les reaccions entre els neutrinos solars i l’aigua pesada dóna la possibilitat de mesurar no només els neutrinos electrònics sinó la combinació dels tres tipus de neutrinos. En els experiments realitzats, com era d’esperar, els nombre de neutrinos electrònics eren només un terç dels esperats però la suma total dels neutrinos s’ajustava exactament als valors teòrics. La conclusió va ser que els neutrinos van canviant de sabor, canvien d’identitat durant el seu temps de vol des del Sol.

Així que els neutrinos no són només unes partícules fantasma sinó que també són camaleòniques.

Més informació en aquest video en anglés. La primera part (0:00 a 11:00) parla del problema de l’oscil·lació dels neutrinos.

Neutrino, Measuring the unexpected from Javier Diez on Vimeo.

Lectura complementaria: Text en anglés molt complet del Comité Nobel: The chameleons of space.

Imatges:
1.- Premiats.
2.- Oscil·lació dels neutrinos.
2.- L’experiment dels neutrino al Sudbury Neutrino Observatory.