A/2017 U1 (PANSTARRS), l’asteroide que vingué d’un altre sistema estel·lar

Fa uns dies els astrònoms es quedaren sorpresos en calcular l’òrbita de l’objecte descobert pel sistema de vigilància robòtica PanSTARRS a Hawaii. Els paràmetres orbitals de l’estrany objecte ens permeten afirmar que provenia sense cap dubte de més enllà del Sistema Solar. A/2017 U1 (PANSTARRS), com se l’ha anomenat, és el primer exemple d’un objecte interestel·lar. El seu origen cal buscar-lo en un altre sistema estel·lar.

Descobert el passat 19 d’octubre, aquest cos d’uns 400 metres de diàmetre viatja a una velocitat molt més gran que qualsevol objecte conegut del Sistema Solar. L’astrònom Rob Weryk (Institute for Astronomy de Hawaii) s’adonà ràpidament que era un cos ben especial  “El seu moviment no podria explicar-se ni com el d’un asteroide normal del Sistema Solar ni com l’òrbita d’un cometa”.

També era estrany que el cos entrara al Sistema Solar des de dalt de l’eclíptica, el pla on es troben i giren els planetes al voltant del Sol. Per tant, l’estrany objecte no va ser mai espentat per cap planeta gegant, com de vegades passa amb els cometes que s’aproximen massa a Júpiter.

Quan es descobrí el 19 d’octubre, A/2017 U1 (PANSTARRS) ja havia passat pel periheli, el punt de màxima aproximació al Sol, el 9 de septembre a una distància de només 37,5 milions de quilòmetres (0,25 ua) del Sol. En aquell moment ningú se n’adonà del petit cos i només es fixaren en ell quan s’aproximà a la Terra a una distància de 24 milions de quilòmetres (unes 60 vegades la distància a la Lluna).

L’animació mostra el camí de l’asteroide A/2017 U1 i com passà a través del sistema solar interior en setembre i octubre del 2017. NASA/JPL-Caltech.

A hores d’ara l’estrany cos ha tornat a creuar el pla de l’eclíptica i retorna a l’espai profund en direcció a la constel·lació de Pegàs, viatjant a  44 quilòmetres por segon respecte del Sol.

Però, el que ha sorprés de debò els astrònoms és el valor de l’excentricitat e de l’òrbita del asteroide, que amb un valor pròxim a 1.2 ens determina una òrbita hiperbòlica, de fet la més hiperbòlica mai detectada en un cometa. Una hipèrbola és una òrbita oberta i, per tant, juntament amb que ve des de dalt de l’eclíptica, ens permet afirmar que  A/2017 U1 (PANSTARRS) prové d’algun lloc de fora del nostre sistema solar.

En mecànica celeste, qualsevol òrbita ha de ser una figura en forma de secció cònica. L’excentricitat d’aquesta secció cònica, excentricitat de l’òrbita, és un paràmetre de l’òrbita que defineix la seua configuració de forma absoluta. L’excentricitat pot ser interpretada com la mesura de com la seua forma es desvia d’una circumferència.

D’aquesta manera l’excentricitat e és estrictament definida per a les òrbites circular, el·líptica, parabòlica i hiperbòlica i pot prendre els valors següents:

L’òrbita hiperbòlica (amb e major que 1) que segueix aquest objecte tan singular és una corba oberta i, a més, de màxima energia. És, per això que, sense cap dubte, A/2017 U1 (PANSTARRS) ha fet un viatge de milers de milions d’anys des d’un sistema estel·lar llunyà que l’expulsà en l’època de la seua formació.

Durant molt de temps hem sospitat que aquests objectes havien d’existir, perquè durant el procés de la formació dels planetes molt de material sobrant és expulsat dels sistemes planetaris. El  que és més sorprenent és que no hagem vist mai passar aquests objectes interestel·lars abans”, comenta Karen Meech del Institute for Astronomy de Hawaii.

Més informació:
A/2017 U1 PANSTARRS: el primer asteroide interestelar
Small object visits from beyond solar system
Imatges:

1.-Diagrama esquemàtic del nostre sistema solar en el que es mostra el camí seguit per A/2017 U1 (línia discontínua) a mesura que travessa el pla dels planetes (l’eclíptica), i la seua eixida del sistema solar. L’ampliació mostra el camí de l’objecte a través del sistema solar intern, amb el segment curt i sòlid que mostra la petita porció de dues setmanes de la ruta durant la qual es podrà observar amb grans telescopis. Per comparació, també es representa l’òrbita altament allargada d’un cometa que forma part del nostre sistema solar. Brooks Bays / SOEST Publication Services / UH Institute for Astronomy.
2.- Exemples d’una òrbita el·líptica (eccentricitat = 0.7), d’una òrbita parabòlica (eccentricitat = 1)  i una òrbita hiperbòlica (eccentricitat = 1.3). Wikipedia Commons.

Fem cometes i observem el cel al Corral de Rafel

Tornem al Corral de Rafel, un centre educativo-ambiental situat a les afores de l’Alcúdia (La Ribera Alta), que, patrocinat pel seu ajuntament, pretén fer conéixer l’entorn natural a tots els habitants.

El passat dissabte dia 23 de setembre vaig ser convidat per la regidoria de Medi Ambient per parlar de la història dels cometes, de com passaren d’augurar desgràcies a ser portadors de materials per a la vida. M’acompanyaren diversos membres de l’Agrupació Astronòmica de la Safor, amb el seu director Marcelino Álvarez al front,  que amb diversos telescopis ens permeteren observar diversos objectes del firmament, començant per la Lluna.

Després d’un sopar a la fresca en companyia de més de 200 persones, molta gent jove amb molt xiquets amb ganes d’aprendre i passar-ho bé, i presentat pel regidor de Medi Ambient, Paco Sanz, vaig desgranar la percepció que tenien els antics d’aquells objectes brillants amb cua que apareixien de sobte en els cels i, com, a poc a poc, la ciència va posar-los en ordre en explicar-los com a simples objectes del sistema solar. Això sí, possiblement amb una importància cabdal en la formació de la vida en la Terra.

L’explicació acabà amb la creació d’un nucli cometari amb terra, aigua i un bon grapat de gel sec, que una vegada fet mostrà un preciós doll de gas a l’estil dels cometes reals. Tot això amb l’entusiasme del xiquets presents que passejaren el cometa creat per tot el corral.

Finalment el públic passà a observar el cel amb diversos telescopis de l’Associació Astronòmica de la Safor, amb els que ja prèviament havíem vist la petita franja de Lluna a punt de pondre’s i que ara observaven nebuloses i cúmuls estel·lars. La nit es mantingué lliure de núvols durant tota l’observació

L’indret on es troba situat el Corral de Rafel és fantàstic per observar el cel. Malgrat que en direcció est les llums de l’Alcúdia i de les ciutats de la Ribera no deixen veure massa bé el cel, en direcció cap a l’oest la foscor de la nit permet veure sense dificultats la Via Làctia.

Moltes gràcies a l’ajuntament de l’Alcúdia per la invitació per poder estar en el Corral de Rafel, en especial a Paco Sanz, el regidor de medi ambient.

Les impressionants imatges de David Pascual donen fe de la fantàstica nit que passarem tots junts al Corral de Rafel.

A més a més, Lluc Avellan ha fet un vídeo en el que tinc una petita intervenció valorant l’activitat de divulgació de l’astronomia.

Imatges de David Pascual.
Vìdeo de Lluc Avellan.

Tornen els Perseids

Perseid 2016. Angel Ferrer, AAS

Agost és el mes dels Perseids, la pluja de meteors que provenen dels residus del cometa 109P/Swift-Tuttle. Encara que el moment de la màxima activitat de la pluja ocorrerà en la nit del dissabte 12 al diumenge 13 d’agost, els Perseids poden veure’s en una banda temporal molt més ampla, des del 23 de juliol fins al 22 d’agost. De fet aquests darrers dies, de nit amb un cel fosc, n’haureu vist segur.

Els Perseids és una pluja de meteors amb el màxim situat tots els anys al voltant del 12 d’agost. Els Perseids també reben el nom popular de “Llàgrimes de Sant Llorenç” per la proximitat del màxim de la pluja de meteors al 10 d’agost, dia de la festivitat del màrtir  del mateix nom.La pluja dels Perseids és un dels fenòmens astronòmics més populars. La raó és que ocorre en ple estiu, en agost, mes de vacances, amb temps per gaudir de la contemplació del cel nocturn. A més també cal destacar que no cal cap equipament per observar els seus meteors. Com que són residus d’un cometa que travessa l’òrbita terrestre, aquestes partícules tenen velocitats semblants o superiors a la velocitat de la Terra. Les velocitats d’aquests meteors poden superar fàcilment els 50 quilòmetres per segon i alguns poden arribar fins i tot als 70 km/s. A aquestes altíssimes velocitats les partícules que potser no arriben a un o dos mil·límetres de gruix es cremen pel fregament en l’alta atmosfera.

La Terra, en el seu camí al voltant del Sol, està travessant actualment l’òrbita del cometa i, per això mateix, està recollint molts d’aquestes partícules cometàries. La Terra es mou aquests dies en direcció a la constel·lació de Perseu, i, per això mateix, sembla, per efecte de perspectiva, que tots els meteors dels Perseids vinguen d’un punt o radiant situat al nord d’aquesta constel·lació.

La pluja començarà a veure’s bé en el moment de l’eixida de la constel·lació per l’horitzó est al voltant de la una de la matinada. Tanmateix els meteors podran observar-se des del moment en que es faça fosc. En aquell moment seran més verticals i eixiran des de baix de l’horitzó. Com a norma general per observar bé els Perseids, cal estar estirat a terra mirant al cel damunt teu. Els meteors vindran de l’est però no sabràs mai en quina direcció van. El que si que sabem és que la durada de cada meteor és només de molts pocs segons. Estan estirat a terra tens a l’abast més cel i, per tant podràs veure més meteors.

Però més important que tot açò és observar des d’un lloc ben fosc. Al País Valencià cal anar a les comarques de l’interior, a la Canal de Navarrés, o millor encara als Serrans o al Racó d’Ademús. També és una bona raó per visitar la reserva Starlight de Gúdar-Javalembre. Un altre bon lloc és situar-vos a les comarques interiors de Castelló.

A Catalunya, el millor indret per veure els Perseids és el Montsec, encara que els valls del Pirineu som molt foscos i els meteors no se us escaparan. Els millors indrets per veure els Perseids a Catalunya venen descrits en l’article que Vilaweb publicà l’any passat 2016: Quins són els millors indrets per a veure els Perseids?

Però quants meteors ens deixaran els Perseids? En condicions normals i observats des de zones fosques poden arribar a contar-se fins a 100 meteors per hora. Ara si no volem deixar la ciutat no esperem veure’ns tants. Des de la platja o la ciutat potser en veiem 10 per hora.

Enguany, però, l’observació dels Perseids no estarà gens afavorida per la Lluna. El nostre satèl·lit natural va assolir la fase de plena el passat 7 d’agost. Per tant, la nit del 12 al 13 d’agost la Lluna estarà pràcticament en fase de quart minvant i eixirà per l’horitzó est poc després de la mitjanit. Aquest fet dificultarà l’observació dels Perseids en els dies de la seua major activitat i també en els dies anteriors. Amb la Lluna fora, la visió dels Perseids minvarà molt. Només seran visibles els meteors més brillants o els bòlids que en aquesta pluja solen ser freqüents.

Les condicions d’observació seran molt millors en 2018.

Diverses associacions astronòmiques preparen dies de portes obertes als seus observatoris o observacions populars.

Al País Valencià podem destacar les activitats de l’Associació Valenciana d’Astronomia (AVA) que prepara una xarrada sobre exoplanetes i una observació popular en Alpuente (els Serrans) patrocinat per l’ajuntament i la diputació la nit del 12 al 13 d’agost. És una activitat totalment lliure en la que els astrònoms aficionats d’AVA portaran diversos telescopis per admirar els planetes Júpiter i Saturn i algunes nebuloses.

L’Agrupació Astronòmica de la Safor, per la seua part, també prepara activitats per a la diada dels Perseids. Ho fa, però, la nit del 14 al 15 d’agost, simultàniament en la població saforenca d’Ador i en Aras de los Olmos, els Serrans.

I el cometa 109P/Swift-Tuttle que té la culpa de tot açò, per on para? Amb un període orbital de 133,28 anys, el seu últim pas prop del Sol va ser l’11 de desembre de 1992 i no tornarà, per tant, fins el 12 de juliol de 2126. No el veurem prop de la Terra fins d’ací a molts anys. Marxà fa temps i quin espectacle astronòmic ens ha deixat…

Imatges:
1.- Perseid 2016.Ángel Ferrer. AAS.
2.- Esquema del radiant dels Perseids.
3.- Vídeo de José María Madiedo (Universidad de Huelva) /Instituto Astrofísico de Andalucía. 2017.
4-5. Anuncis d’activitats d’observació de Perseids.
6.- Un bòlid dels Perseids observat la nit de l’11 al 12 d’agost 2016 a Polònia. Wikimedia Commons.

Finalment una explicació per al misteriós senyal Wow!

Finalment un equip d’investigadors del Center for Planetary Science (CPS) als Estats Units ha donat una explicació convincent per al misteriós senyal de ràdio “Wow” detectat el 1977. L’estudi conclou que el núvol d’hidrogen que envoltava un cometa, desconegut aleshores, va emetre el fort senyal, l’origen del qual s’associava a una possible civilització extraterrestre.

El 15 d’agost del 1977 a les 23:16, el radiotelescopi de la Universitat d’Ohio, Big Ear va rebre un senyal de ràdio d’origen desconegut que provenia de la zona oest de la constel·lació del Sagitari.  Va durar exactament 72 segons i va assolir una intensitat màxima 30 vegades superior al soroll de fons.

En aquella època no existien encara els registres digitals i l’ordinador escrivia sobre fulls  de paper continu els senyals rebuts. La magnitud d’aquests s’expressava en números (del sistema hexadecimal). L’operador Jerry Ehman, que control·lava aquell dia l’instrument, va escriure la famosa nota “Wow!” (Caram!) al costat dels valors desorbitats, com es pot veure a la imatge. I aquest és el nom que se li ha quedat a aquell misteriós senyal.

Des de llavors, els científics han tractat de buscar una explicació plausible per a aquesta pujada sobtada de potència de ràdio, però cap ha semblat viable. S’hi pensà en fonts astrofísiques com ara asteroides, exoplanetes, estrelles però, també en satèl·lits militars secrets. Tanmateix, cap d’aquests hipòtesis encaixava  en el senyal rebut: molt concentrat en un punt del cel i esporàdic ja que estudis posteriors amb altres radiotelescopis més potents no tornaren a rebre cap increment de potència en aquella direcció per damunt del soroll radioelèctric.

Així que durant els darrers 40 anys la hipòtesi més raonable per explicar el fenomen era que fora un senyal d’alguna civilització extraterrestre, bé dirigit intencionadament cap a la Terra o captat accidentalment per l’antena Big Ear. La freqüència d’emissió era de 1420 MHz (longitud d’ona 21 cm) que correspon a la freqüència d’emissió de l’hidrogen neutre. Aquesta freqüència és àmpliament usada en radioastronomia per a cartografiar la Via Làctia o estudiar l’Univers ja que l’hidrogen és l’element més abundant.

“Escoltar” possibles civilitzacions alienígenes amb l’ús de la línia de 21 cm de l’hidrogen està considerat molt interessant pel programa SETI de cerca de possibles senyals extraterrestres. I, és que la línia es troba en la zona més tranquil·la de l’espectre radioelèctric, l’anomenada Finestra de Microones.

Aquests últims mesos, però, un grup del CPS liderat per l’astrònom Antonio Paris ha trobat una explicació més plausible. Han suggerit que el senyal sobtat i misteriós en Big Ear podria provindre del gran núvol d’hidrogen amb un radi d’uns pocs milions de quilòmetres que envolta el nucli d’un  cometa. I com que el cometa es mou ràpidament en el cel, la desaparició els dies posteriors del senyal en la mateixa posició celeste seria totalment explicable.

Els astrònoms han assenyalat que els cometes P/2008 Y2(Gibbs)266/P Christensen, descoberts en 2008 i 2006 respectivament, es trobaven just en la constel·lació de Sagitari, la zona del cel que explorava el radiotelescopi Big Ear. Els investigadors tingueren una oportunitat de comprovar la seua idea quan els dos cometes tornaren a aparèixer entre novembre de 2016 i febrer de 2017 per la mateix zona.

I, després de 200 observacions de la zona, que varen incloure la Via Làctia, púlsars, forats negres, i els dos cometes, els científics han arribat a la conclusió que els senyals de ràdio de l’hidrogen neutre d’aquests últims encaixen amb el senyal  “Wow!” de fa 40 anys. Per acabar de confirmar-ho van estudiar altres tres cometes que també tenien emissions similars. Evidentment no poden afirmar al 100% que “Wow!” va ser produït pel cometa 266/P Christensen, però poden afirmar amb relativa seguretat que va ser generada per un cometa.

Adéu, per tant a l’explicació alienígena. De fet, era l’emissió més forta i estranya captada per les nostres antenes i, sense explicació, per ara. Era molt temptador atribuir-ho a tecnologia no-terrestre, però cal assumir les proves. La navalla d’Occam torna a aplicar-se.

Quan dos o més explicacions s’ofereixen per a un fenomen, l’explicació completa més simple és preferible; és a dir, no han de multiplicar-se les entitats sense necessitat.

Ah! Per cert, el radiotelescopi Big Ear ja no existeix. La Universitat Ohio Wesleyan que era la propietària del terreny on estava muntat va vendre l’indret l’any 1983. Va ser, per tant, desmantellat l’any 1998 per construir-hi un camp de golf de 18 forats i una residència de 400 cases per a rics.

Imatges:

1.- El senyal “Wow” sobre paper contínu. Wikimedia Commons.
2.- Big Ear. BigEarg.org
3.- Posició del senyal Wow! en la constel·lació de Sagitari. Seti.

Un model per a KIC 8462852 fet des de València

Res d’estructures alienígenes, ni de núvols de cometes en l’estel KIC 8462852, també anomenat estel de Tabby per l’astrònoma que més l’ha estudiat, Tabetha Boyajian. El comportament inusual podria explicar-se per la presència d’un planeta gegant amb anells, com Saturn, acompanyat de dos núvols gegantescos d’asteroides troians al voltant de l’estrella.

Això és el que un equip d’astrònoms de la Universitat de València, liderat per Fernando Ballesteros, ha proposat aquesta setmana en un article enviat a la revista Monthly Notices of the Royal Astronomical Society (MNRAS), disponible ací.

Recordem que l’estel de Tabby va ser observat per la missió Kepler entre l’any 2009 i 2013 dins d’un estudi de 150.000 estrelles per tal de determinar la presència o no de planetes. Però aquest estel, en lloc de mostrar una petita baixada d’un màxim d’1% de la lluminositat en passar el planeta per seu davant, com s’havia vist en altres estels amb planetes, ha mostrat baixades irregulars de flux d’un 20%. Una davallada tan brutal de llum estel·lar sense cap explicació convincent i que ha convertit l’estel en l’objecte més misteriós de la Via Làctia.

La setmana passada, com ja vaig informar, l’estel de Tabby tornà a manifestar-se. Des del 2013 havia estat tranquil·la, sense activitat aparent, almenys detectable des de la Terra. I durant 5 dies la lluminositat de l’estel cau un 3%.

I que ha proposat l’equip de l’Observatori Astronòmic de la Universitat de València pel que respecta a l’estrany objecte? Des de fa un any estan estudiant la possibilitat d’explicar l’inusual comportament de l’estel amb l’ús d’elements totalment habituals al Sistema Solar. L’equip de treball assegura que tota la peculiaritat de KIC 8462852 tindria sentit si se suposa l’existència d’un planeta gegant amb anells, com ara Saturn, amb un període orbital de 12 anys, i acompanyat en l’òrbita al voltant de l’estrella de dos núvols gegantescos d’asteroides troians. L’esdeveniment de la setmana passada ha accelerar l’acabament de l’article científic i l’enviament a MNRAS per a la seua publicació, prèvia valoració pels referees o censors.

Els asteroides troians són un grup d’asteroides que comparteixen òrbita amb un planeta  a l’entorn dels punts de Lagrange  L4 i L5 , situats aproximadament a 60° al davant i a 60° al darrere del planeta en la seua òrbita, respectivament. En els punts de Lagrange, l’atracció gravitatòria del planeta i de l’estel s’equilibren i, per tant, són punts d’estabilitat gravitatòria. Així que, de manera natural, els objectes que s’hi troben allí, romanen estables durant mil·lennis, seguint o precedint el planeta. Els troians més estudiats són els del planeta Júpiter com es mostra a la figura. Els que segueixen el planeta gegant s’anomenen pròpiament asteroides troians, i, per compensar, els precedents reben el noms d’asteroides grecs. Tanmateix per acurtar, als dos tipus d’objectes se’ls anomenen globalment troians .

Farà un any el company Fernando Ballesteros, de l’Observatori Astronòmic de la Universitat de València, s’observà d’un detall del que, aparentment, ningú s’havia adonat. Es podria interpretar la baixada del 15% de flux que detectà Kepler al voltant del dia 793 de la missió (figura 2c) con el pas o trànsit d’un planeta gegant i la sèrie de fenòmens al voltant del dia 1500 (figura 2d) com el pas d’un dels grups dels asteroides troians associats.

Com que el model pretén ser un model científic, ha de fer prediccions. I si tot és com sembla, aproximadament al voltant del dia 4430, és a dir en febrer del 2021, el segon grup de troians ha de passar per davant l’estel, un succés que la finestra d’observació del Kepler no permeté veure en el seu pas anterior. És a dir, a principis del 2021 la corba de llum de l’estel de Tabby s’ha de tornar caòtica amb baixades espectaculars i irregulars. A més a més s’espera un nou trànsit principal del planeta anellat per davant de l’estel a principis del 2023.

I per què cal introduir un anell al voltant del planeta? En la corba de llum del dia 793 (fig 2c) s’observa que la baixada és asimètrica. La davallada és més suau que la pujada de llum. Això indica que l’objecte que tapa l’estel no és esfèric sinó asimètric. I, sembla que la hipòtesi d’un anell inclinat un 5º respecte al pla orbital del planeta fa casar les dades observacionals molt bé.

Finalment caldria donar una explicació a la davallada de llum del sistema KIC 8462852 del 19 de maig passat. El model ho preveu perfectament com l’eclipse secundari del sistema que ocorre quan el planeta passa per darrere l’estel. Donat que els planetes sempre reflecteixen un poc la llum del seu estel, “l’apagada” del planeta ha de fer baixar momentàniament la llum del conjunt estel-planeta.

Encara que hi ha alguns punts que caldria aclarir, com ara que no s’ha detectat amb el satèl·lit Spitzer cap emissió de llum remarcable en l’infraroig que denotaria un disc, o que el planeta ha de ser gran (30% radi estel·lar) per fer un eclipsi tan profund i durador, el model té molt bona pinta i explica tot els fenòmens observats fins ara i, més important encara, fa previsions per al futur. Si els pròxims dies o mesos es produeix un altre fenomen d’activitat de l’estel KIC 8462852, el model no serà correcte. Però si l’estel no fa res fins al 2021 ja tindrem una explicació possible per a l’estel més misteriós de la Via Làctia.

Més informació:
La estrella de Tabby y sus troyanos, el bloc de Alberto Fernández Soto. 24 maig 2017.
New Hypothesis For Tabby’s Star Suggests A Ringed Planet And Lots Of Asteroids, Iflscience. Alfredo Carpineti, 24 de maig 2017. Amb entrevista a Fernando Ballesteros.
Detectar extraterrestres seria un indicatiu de que és possible sobreviure al desenvolupament tecnològic, Entrevista a Fernando Ballesteros, Premi Europeu de Divulgació Científica, Pols d’estels, 15 febrer 2007.

Imatges i vídeos:

1.- Esquema del sistema de KIC 8462852 i l’explicació del comportament inusual. Ballesteros et al., enviat a MNRAS, 2017.
2.- Corba de llum de l’estel KIC_8462852 al llarg de 1580 dies d’observació. Es veuen una baixada de flux al voltant del dia 793 i altres seguides cap al dia 1500. Baix es veuen ampliacions de les baixades. De l’article Planet Hunters X. KIC 8462852 – Where’s the flux?.
3.- Esquema dels asteroides troians de Júpiter. Wikipedia Commons.
4.- Animació del sistema per a Cuatro, feta per Santiago Romero Ruiz, Infografista en Noticias Cuatro·, Informativos Telecinco y Las Mañanas de Cuatro.

El misteri torna a l’estel KIC 8462852

KIC 8462852, l’estel més misteriós de l’univers, tal com l’anomenava fa uns dies Josep Casulleras  en un extens reportatge publicat a Vilaweb, ha tornat a fer de les seues tal com estava previst. Ha tornat a minvar la seua llum de manera espectacular. Des de fa una setmana, doncs, diversos observatoris del món l’estan seguint per tal d’esbrinar quina és la causa de les baixades espectaculars de brillantor de l’estrella.

La missió Kepler, llançada l’any 2009, ha permés descobrir més de 3000 planetes al voltant d’estels mitjançant el mètode del trànsit. Si un cos planetari passa per davant del seu estel, la brillantor d’aquest baixa un màxim d’1% durant unes hores. Però tal com vaig contar en descobrir-se, en una d’aquestes estrelles, la KIC 8462852, situada a uns 1.500 anys llum de nosaltres a la constel·lació del Cigne, les disminucions de llum que s’hi van detectar eren totalment anòmales, de fins al 20%, amb durades de dies i setmanes. No s’hi trobava cap explicació que s’ajustara a les dades. Això sí, hipòtesis moltes: des d’un disc de pols, a núvols de cometes fins a una megaestructura alienígena. Va néixer així el gran enigma de l’estel més misteriós de la galàxia, coneguda popularment com l’estel de Tabby, en honor de la seua principal investigadora, l’astrònoma nord-americana Tabetha Boyajian.

Doncs ha tornat a passar. Tal com l’astrònoma va preveure, aquest últims dies el fenomen misteriós que fa disminuir la lluminositat de l’estel de Tabby s’ha posat en marxa. Ho contava ahir al seu bloc en anglés l’astrònom cordobés Ángel R. López-Sánchez que treballa a l’Australian Astronomical Observatory (AAO).

Fa uns dies els astrònoms de l’Instituto de Astrofísica de Canarias liderats per Marian González, amb Héctor Socas-Navarro, Andrés Asensio, Carlos Westendorp i Carlos González estaven obtenint dades espectroscòpiques de l’estel amb el Telescopi Mercator d’1.2 m, situat a l’Observatori del Roque de los Muchachos a La Palma, Canàries.

La nit de diumenge passat varen descobrir un comportament inusual a les línies de l’hidrogen de l’atmosfera estel·lar. Ràpidament es posaren en contacte amb l’astrònoma principal de l’estudi de l’estel, Tabetha Boyajian que va fer una crida internacional per observar KIC 8462852 amb tots els mitjans possibles, fins i tot els astrònoms aficionats han estat invitats. Ací part de la crida de l’astrònoma:

Col·legues des de Canàries estan a la meitat d’un temps d’observació de l’estel KIC 8462852 amb l’espectrògraf HERMES del telescopi Mercator (Tenerife, Espanya). Els seus espectres preliminars mostren emissió en el centre de la línia d’Hα, menor pel que fa al Ca h i k. Per refrescar-vos la memòria, totes les observacions espectroscòpiques anteriors estaven lliure de qualsevol emissió…

Així que tots els mitjans d’observació disponibles estan observant des de fa uns dies el misteriós objecte. La passada nit (19-20 de maig), per exemple, s’observà l’estel misteriós des de les instal·lacions de l’Observatori d’Aras de los Olmos de la Universitat de València.

La xarxa global de telescopis Las Cumbres Observatory està monitoritzant l’estrella de Tabby  i va ser testimoni d’un canvi dramàtic de l’estrella en els últims dies. La brillantor es mostra pel que fa a la lluentor normal de l’estrella – el punt més baix mostra una caiguda del 2%. LCOGT

L’alerta ha permés detectar una baixada de lluminositat d’un 2% com anunciava ahir Tabetha Boyajian al twitter i sembla que va en augment. En els esdeveniments anteriors, la corba de llum ha arribat a baixar fins al 20%. És adir, la llum de l’estel ha minvat un 20% de manera irregular i durant uns dies. Imagineu quin fenomen grandiós i a gran escala està passant ara mateix al sistema estel·lar de Tabby.

Ara que l’observen (o l’observaran pròximament) multituds d’instruments i tècniques diverses des de terra i des de l’espai podrem tindre una idea més precisa del comportament estrany de l’estel. Les nits següents poden ser emocionants…

Actualització

Sembla que el fenomen que afecta a l’estel KIC 8462852 ha acabat, com demostra la corba de llum obtinguda a Las Cumbres Observatory i a molts altres. L’estel torna al nivell normal.

Imatges:

1.- Camp d’estels al voltant de KIC 8462852 (amb una creu al damunt) del Digitized Sky Survey – STScI/NASA, Colored & Healpixed by CDS. Amb Aladin Lite. Centre de Dades Astronòmiques d’Estrasburg.
2.- Mapa de la posició de l’estel de Tabby. De l’usuari @owl_astro.
3. Dibuix artístic d’un eixam de cometes al voltant de KIC 8462852. NASA/JPL-Caltech.
4.- Gràfic de la caiguda de la lluminositat de l’estel obtinguda per la xarxa de telescopis Las Cumbres Observatory.

Cometes: de la por a la vida

L’estudi de la percepció que la humanitat ha tingut sobre que són els cometes és apassionant.

En temps antics l’aparició d’un cometa era un esdeveniment extraordinari que s’associava sempre a la mort d’un rei i a un grapat de desgràcies per al seu regne. En una concepció del cosmos geocèntric on tots els cossos celestes segueixen unes òrbites circulars inalterables, la sobtada presència d’un objecte brillant al cel removia consciències. No podia haver cap cos nou al sistema del món vigent.

Però com explicar la presència  dels cometes al cel d’Europa? Si no eren celestes havien de ser atmosfèrics, com propugnava Aristòtil. Tanmateix aquest argument saltà pels aires amb l’arribada del cometa de 1572 que va ser estudiat per Tycho Brahe des de Dinamarca i per molts altres astrònoms europeus, com ara el valencià Jeroni Muñoz. A partir de la posició relativa del cometa vista des de molts punts d’observació europeus, el gran astrònom danés va concloure que el cometa no era cap objecte terrestre, sinó que es trobava més enllà de l’esfera de la Lluna.

Després vingué Edmund Halley, que amb les equacions de la gravitació del seu amic Newton, demostrà que els cometes són senzillament objectes del Sistema Solar però amb una òrbita molt allargassada.

Ara en el segle XXI saben que els cometes provenen dels residus de roques i gels que quedaren en els moments finals de la formació del Sistema Solar. Els reservoris del cinturó de Kuiper i del núvol d’Oort que es troben més enllà de Neptú contenen milions de cossos gelats, que si són pertorbats en les seues òrbites, poden convertir-se en nous cometes.

Els cometes són, per tant, objectes fòssils que conserven en els seus interiors informació molt valuosa per conéixer com va ser la infantesa del Sistema Solar.

Per saber-ne més de tot això l’any 2014 arribà la sonda europea Rosetta al cometa 67P/Churyumov-Gerasimenko per estudiar-ne la composició. Durant els dos anys de la missió s’hi ha descobert un munt de molècules orgàniques, moltes de les quals són essencials per a la vida com per exemple l’aminoàcid glicina.

De tot això vaig parlar fa uns dies davant d’unes 40 persones a una de les sales de Foment de Gandia, invitats pels company de l’Agrupació Astronòmica de la Safor. La xarrada acabà amb la fabricació d’un cometa en directe. Però això ho podeu veure a la foto que encapçala l’apunt.

Imatges:

1.- Després de construir un cometa, cal traure-li els dolls de gas. Paco Soriano.
2.- Cartell de la xarrada. AAS.

Un final de pel·lícula per a Rosetta

La missió Rosetta acabarà definitivament el pròxim divendres 30 de setembre. La nau d’ESA que ha estat explorant el cometa 67P/Churyumov-Gerasimenko des del 6 d’agost del 2014 s’està allunyant ràpidament del Sol i, ara mateix, els panells solars cada dia que passa ja no poden donar l’energia suficient per mantindre actius tots els instruments científics. Així que l’equip de la missió ha decidit sacrificar-la però, això sí, donant-li un final de pel·lícula.

Existia la possibilitat de salvar-la. S’hagués pogut separar-la del cometa i enviar-la en una òrbita al voltant del Sol passant per zones fredes i amb poca radiació solar. Tot això amb el risc evident de perdre la comunicació amb la nau i, encara pitjor, amb les possibles interferències en ràdio causades per Rosetta que podrien afectar les xarxes de seguiment de l’espai profund de la NASA i d’ESA que segueixen diàriament missions en Júpiter, Saturn o més enllà de Plutó.

img76174

Calia, per tant, donar-li un final èpic a Rosetta. Ja fa uns dies que aquesta segueix una òrbita de col·lisió que la du directament cap al cometa. Divendres 30 de setembre finalment xocarà “suaument” en la regió d’Abydos situada en el lòbul més menut del cometa. La sonda, que caurà a una velocitat molt baixa, d’uns 3 km/h, més o menys al pas d’una persona, segurament rebotarà com ho va fer Philae encara que no s’espera que faça els salts espectaculars d’aquesta, a causa de la seua major massa. Rosetta no està dissenyada per aterrar així el contacte amb el contacte serà el final de la missió. Els panels solars es retorceran, es trencaran segurament, i l’antena de comunicació deixarà d’apuntar a la Terra i la comunicació es tallarà aleshores bruscament. Tanmateix s’espera que la càmera Osiris capte imatges fins a pocs metres de la superfície, abans de la col·lisió. Seran imatges espectaculars, sense dubte.

La zona elegida per a l’impacte és d’un gran interés científic. És una regió llisa ben prop de diverses grans fosses de més de 100 metres de diàmetre i 60 m de fondària. És previst que la sonda aterre entre la fossa  Ma’at 2 i la Ma’at 3 que es troben en la regió d’Abydos en el lòbul més menut del cometa (mireu les imatges adjuntes). Aquestes fosses són molt interessants ja que són l’origen dels intensos dolls de gas i pols emesos pel cometa sobretot en els mesos de màxima aproximació al Sol. Rosetta_s_planned_impact_site_node_full_image_2

El moment de l’impacte està previst per a les 11:20 h +/- 20 minuts (Greenwich Meridian Time, GMT), 13:20 d’hora local, amb un error de 20 minuts. L’animació del primer vídeo mostra el descens de Rosetta sobre el cometa 67P/Churyumov–Gerasimenko. Evidentment les escenes estan accelerades per a fer molt clars els moviments de la nau i la rotació del cometa.

Active_pits_on_comet_full_image Respecte a la zona d’impacte cal destacar que s’han descobert 18 fosses com les Ma’at en les imatges de la càmera d’alta resolució OSIRIS tot al llarg de la missió i que era molt perillós per a la nau acostar-s’hi quan els dolls de gas i pols estaven actius. La imatge adjunta mostra la posició de les fosses (pits en anglés) en la superfície cometària i com es creu que es formen. Ma’at 2 i la Ma’at 3 es troben en l’extrem superior del lòbul menut situat a la dreta.

Finalment agrair al departament didàctic d’ESA l’esforç per divulgar la gesta tecnològica europea de situar un satèl·lit al voltant d’un cometa i tractar d’aterrar en la superfície. Hem gaudit molt amb les animacions fetes per a nens. Són senzilles, curtes i diuen tot el que cal. Les he utilitzades moltíssim.

En aquest vídeo d’ESA (versió en castellà) dedicat al public més infantil, Rosetta recorda les descobertes científiques apassionants que va fer durant el seu temps al cometa 67P/Churyumov-Gerasimenko, incloent la troballa inesperada de Philae. En el final del vídeo es prepara per descendir al cometa al final de la seua missió extraordinària.

Us trobarem a faltar Rosetta i Philae.

Actualització:

Sylvain Lodiot, gerent d’operacions de la nau, va confirmar la pèrdua del senyal (LOS) i el final de les operacions de Rosetta a les 13:19 hora local central europea, 30 de setembre de 2016, des de la sala de control principal en el centre d’operacions espacials de l’ESA, a Darmstadt, Alemanya.

Last-image-RosettaL’última imatge de Rosetta del cometa 67P/Churyumov-Gerasimenko, va ser presa poc abans de l’impacte des d’una altitud de 20 m sobre la superfície. La imatge s’obtingué amb la càmera gran angular OSIRIS el 30 de setembre. L’escala de la imatge és d’aproximadament 5 mm/píxel i la imatge mesura al voltant de 2,4 m de diàmetre.

 

Vilaweb ha fet un seguiment dels últims minuts de la missió: La sonda Rosetta impacta contra el cometa 67P oferint imatges espectaculars.

Imatges i videos.
1. Visualising Rosetta’s descent. ESA/ATG medialab, Music: Pawel Blaszczak
2.- Posició simulada d’on es troba Rosetta respecte del cometa. Avui 27 de setembre a les 10:51:40 GMT, la nau està a 20,823 km del cometa. El Sol està a 3.82 ua i la Terra a 4.8 ua. Una unitat astronòmica (ua) és 150 000 000 km.
3.- Zona prevista d’impacte sobre el cometa. Imatge del 9 de setembre 2016. ESA/Rosetta/NavCam.
4.- ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA; graphic from J-B Vincent et al (2015)

Finalment t’hem trobat, Philae

Philae_found_node_full_image_2

El que semblava perdut per sempre s’ha trobat finalment. La petita nau Philae, que aterrà de manera accidentada sobre la superfície del cometa 67P/Churyumov-Gerasimenko el 12 de novembre de 2014, ha estat descoberta en una escletxa fosca on difícilment podia arribar la llum solar.

La sonda Philae només pogué treballar durant tres dies mentre duraren les bateries i després es perdé la comunicació. L’any passat, en juny i juliol de 2015, en estar més prop del Sol, aquestes es recarregaren parcialment. Es pogué, llavors, establir una efímera comunicació durant només uns pocs dies.

Ara que queda menys d’un mes per a l’acabament de la missió Rosetta, i tancat des de juliol l’instrument que permetia la comunicació amb Philae, s’ha descobert el lloc, així com la posició i orientació en que va quedar la sonda d’aterratge. Ja és massa tard per comunicar-se amb ella però almenys trobar-la serà important per posar en context les dades que envià en aterrar. El saber quin tipus de terreny té al seu voltant permetrà interpretar els resultats obtinguts.

Aquestes imatges van ser obtingudes el passat 2 de setembre per la càmera d’alta resolució OSIRIS quan Rosetta es trobava a només 2,7 km del cometa. A aquesta distància la resolució de les imatges és de 5 cm/píxel i per tant un objecte com Philae d’un metre d’ample havia de ser fàcilment visible.

La posició en que va quedar, totalment de costat, explica el perquè va ser tan difícil la comunicació.

Les imatges superiors mostren a l’esquerra la posició i orientació de Philae sobre el cometa mentre que a la dreta he posat una imatge artística de la sonda com a comparació quasi en la mateixa posició, encara que no en la mateixa cara, per a que es comprenga.

ESA_Rosetta_OSIRIS_lander_details-350x350 Des de l’aterratge frustrat, quan Rosetta encara estava orbitant lluny del cometa, s’havien localitzats en les fotos de baixa resolució diversos objectes com a possibles candidats a ser el aterrador perdut Philae. Ara, però, com que Rosetta s’aproxima cada vegada més al cometa, les imatges són d’alta resolució i s’han pogut descartar candidats i trobar finalment la posició de Philae.

Aquest notable descobriment es produeix al final d’una llarga i penosa recerca,” diu Patrick Martin, director de la missió Rosetta de l’ESA. “Estàvem començant a pensar que Philae quedaria perdut per sempre. És increïble que hagem capturat aquest en l’hora final “.

Instruments Philae En la imatge superior es troben assenyalats els diversos instruments que du Philae. Els podem comparar amb la imatge del dibuix de la nau. S’observen dues de les tres potes, una de les càmeres panoràmiques CIVA, el trepant  SD2 i el sensor Sesame. L’explicació de cadascun d’aquests instruments i qué es va observar a la superfície ho podeu trobar en l’apunt On es troba i qué ens contà Philae?

Aquest descobriment ha alegrat força l’equip de científics que controlen la nau des del 6 d’agost del 2014 quan arribà al cometa. Ara mateix, la missió es troba en la seua fase final ja que el pròxim 30 de setembre Rosetta serà enviada en un viatge sense retorn a la superficie de 67P/Churyumov-Gerasimenko on investigarà la regió de Ma’at i on s’espera que obtinga observacions crítiques que revelen l’encara secreta estructura interior del cometa.

Imatges:

1.- En la imatge composada, la imatge superior dreta, que mostra el cometa sencer, va ser presa el 16 d’abril 2015. En la part superior del lobul, un punt roig en la punta situada més a la dreta assenyala on es troba Philae.

Totes les imatges són de: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.

Els Perseids 2016, una pluja d’estels per recordar

perseids3s

L’espectacle “piromusical” astronòmic d’agost és la pluja dels Perseids. Un ball de llums celestes que ens recorda que som part del cosmos i que la nau Terra viatja sense aturar-se. A l’observació d’una pluja d’estels s’hi suma, doncs, la seua bellesa i la constatació evident que som només pols d’estels.

Quin és l’origen d’aquestes llums celestes que, màgicament per als poc avesats a mirar cap amunt, travessen el firmament? Tot aquest foc d’artifici natural té un origen molt llunyà en l’espai i el temps. La causa última és el resultat del pas d’un cometa per les proximitats del Sol.

Els Perseids estan associats al cometa 109P/Swift-Tuttle. Amb un període orbital de 133,28 anys, el seu últim pas prop del Sol va ser l’11 de desembre de 1992 i no tornarà, per tant, fins el 12 de juliol de 2126.

Com els passa a tot cometa, aquest tros de gel bruta (gels d’aigua, amoníac, etc. i pols) com se solen anomenar,  s’escalfa cada vegada que s’acosta al Sol i emet material cometari mitjançant immensos dolls que formen cues de pols i gas ionitzat. Aquest fenomen l’hem pogut veure en directe en el cometa 67P/Churyumov-Gerasimenko mitjançant la nau Rosetta. El resultat és que l’òrbita del cometa 109P/Swift-Tuttle s’ha embrutat amb els materials perduts en forma de diminutes roques o trossos de gels.

comet_dustAquests dies la Terra està creuant l’òrbita del cometa i ja va trobant-se amb els seus residus. Normalment la taxa de meteors dels Perseids és de 100 meteors per hora. Enguany, però, les pertorbacions gravitatòries de Júpiter han mogut els densos corrents de partícules dels passos anteriors del cometa dels anys 1079, 1479 i 1862 més aprop de l’òrbita terrestre amb la qual cosa els analistes preveuen una pluja molt més intensa que els anys passats. En el cel nocturn d’aquests dies, veurem com els meteors dels Perseids que semblen provindre, a causa de la perspectiva, d’un lloc comú al cel situat a la constel·lació de Perseu seran molt més abundants.

Comet-streams-Perseids2016

La predicció és de 200 a 500 meteors per hora en el moment del màxim que sembla que ocorrerà la nit del 11 al 12 d’agost, encara que també se’n podran veure la nit següent, la del 12 al 13. Això és molt més del doble de la taxa normal. A veure si és veritat.

Tindrem, però, l’inconvenient de la Lluna sobre l’horitzó durant les primeres hores de la nit. Tanmateix una Lluna creixent gibosa no serà massa problema per a l’observació ja que es pondrà en les primeres hores de la matinada entre la 1:30 (nit 11-12) i les 2 (nit 12-13). Així que si l’esclat de meteors es produeix abans de l’alba, la Lluna ja no es trobarà sobre l’horitzó i, per tant, ja no serà una molèstia per a l’observació.

meteor-Perseids-predicted-ZHR-2016-e1469455637560L’espectacle començarà a partir de les 12 de la nit del dijous 11 al divendres 12 d’agost (i també la nit del 12 al 13) quan la constel·lació de Perseu isca per l’horitzó nord-est i durarà fins a l’eixida del Sol.

Si aguantem durant la nit, veurem que Perseu va ascendint i que el nombre de meteors brillants també augmentarà. Cap a les 2 o les 3 del matí de la nit de l’11 al 12 d’agost podrem veure dotzenes d’estels fugaços creuant el cel cada hora. Bé, açò són les previsions.

Per observar les pluges d’estels no cal cap equipament especial, ni prismàtics, ni telescopis. Potser, si en sabeu, podeu utilitzar una càmera reflex muntada sobre un trípode, apuntar cap al cel amb un temps d’exposició de 15 a 30 segons i esperar captar-ne alguna. Si ho feu bé, tindreu sorpreses…

Per observar visualment els Perseids només caldrà que us estireu a terra sobre una tovallola a la platja (si està ben fosca) o al camp molt millor. Així podreu veure tot el cel de cop i no us perdreu cap meteor. Què empipador resulta quan el company o companya que mira en una altra direcció diu: “una, la veus….”! Massa tard, ja s’ha cremat a uns 80 km d’altura….

Perseid_radiantPer als Perseids, oblideu-vos de tractar de mirar des del centre d’una ciutat. El resultat sempre serà molt decebedor. En l’entorn de les ciutats la contaminació lumínica ens ha furtat les estrelles.

Per gaudir dels Perseids serà millor observar-les des d’un lloc fosc. Segur que coneixeu un lloc allunyat de les ciutats on el cel nocturn encara està impol·lut i des d’on podeu gaudir encara de la visió de la Via Làctia.

A Catalunya podeu trobar aquests cels foscos dels nostres avis a l’entorn del Montsec, al voltant d’Àger, o a l’interior del Bages, per exemple a Talamanca, o a la Segarra o cercant la foscor del Pirineu.

Al País Valencià cal cercar la foscor nocturna cap a l’interior, cap als Serrans. Un bon indret d’observació seria l’entorn d’Aras de los Olmos on hi ha diversos observatoris astronòmics instal·lats. També podem viatjar a la comarca de la Foia de Bunyol o la Vall de Cofrents per trobar cels foscos.

img_32189Algunes organitzacions d’aficionats a l’astronomia i ajuntaments estan organitzant observacions populars a les quals s’hi podrà acostar tothom. L’Agrupació Astronòmica de la Safor (AAS), per exemple, organitza una observació la nit del 12 al 13 d’agost des del Centre Social de la Marxuquera a Gandia amb la col·laboració de l’ajuntament. La mateixa AAS organitza també a Oliva durant la nit del 11 al 12 i la nit del 12 al 13 d’agost (ací també)) en la Muntanyeta Verda, un indret pròxim a la població l’observació de la pluja. També amb la col·laboració de l’ajuntament. Per altra banda també s’organitzaran observacions a Ador (la Safor) i Elda (Vinalopó mitjà).

Cal destacar com els ajuntaments s’han adonat que els grans esdeveniments astronòmics són també un recurs cultural i turístic que cal aprofitar.

Si esteu de vacances fóra de les nostres terres, podeu acostar-vos a algunes de les observacions que fan a Galícia, Navarra o Aragó. Segur que sereu benvinguts…

Aquests dies els astrònoms planetaris estan en plena feina. No només estan pendents de la nau Rosetta al voltant del 67P/Churyumov-Gerasimenko, o de Juno al voltant de Júpiter. També s’interessen pels meteors dels Perseids. Així l’Instituto de Astrofísica de Andalucía (IAA-CSIC), en col·laboració amb la Asociación AstroInnova i el grup Daedalus, llançaran la nit de  l’11 al 12 d’agost un globus sonda para gravar per primera vegada, en color i alta definició, la pluja d’estels des de l’estratosfera.

Així que, si els núvols ens deixen, busqueu un lloc fosc les pròximes nits i espereu a veure com cauen els “estels”. I mirant-ho, penseu com d’insignificants som…

Imatges:

1.- L’astrònom Fred Bruenjes va gravar una sèrie de moltes fotos de 30 segons d’exposició durant unes sis hores la nit de l’11 d’agost al 12 d’agost, 2004, utilitzant una lent gran angular. La combinació de les fotos fa aquest aspecte espectacular. Hi ha 51 meteors dels Perseids a la imatge composta, entre ells un vist gairebé de front. Fred Bruenjes. De la web de NASA.
2.- Video
3.- Representació artística de l’entrada de la Terra a els corrents de partícules cometaries.
4.- En aquest diagrama, l’astrònom francès Jeremie Vaubaillon ha traçat la interacció de la Terra a través del corrent de meteoroides dels Perseids d’enguany. L’òrbita de la Terra es representa en color taronja. Les dates s’indiquen com dia/mes (exemple 11/8 = 11 d’agost les 0 hores UT). Space.com.
5.- Previsió del pic d’activitat dels Perseids. Bill Cooke, cap del NASA Meteoroid Environment Office.
6.- Radiant dels Perseids. Mirant cap al nord-est.