L’hotel de les mil portes

Bon Nadal a tots els lectors.

Malauradament vaig curt de temps i no he sabut inventar una entrada nadalenca, avui en poso una, en forma de diàleg, de les que tenia «en conserva».

—Avui, a classe de didàctica de les matemàtiques ens han posat un problema curiós —em va dir un dia la meva filla en tornar de la facultat fa una dotzena d’anys.

—Quin problema?

Hi ha un hotel amb 1000 cambres numerades de l’1 al 1000 amb les portes tancades. 1000 cambrers passen successivament per totes les portes. El primer d’una en una, si la troba tancada l’obra i si és oberta, la tanca. El cambrer número dos, començant per la segona, passa les cambres de dos en dos fent el mateix. El tercer cambrer, igual però començant per la cambra tres i anant de tres en tres. I així fins el cambrer 1000 que va directament a la porta 1000 i la canvia. La pregunta és: quantes portes queden obertes al final?

Foto feta des d’Eina, a uns 5 km en línia recta de l’hotel de Font Romeu, a la Cerdanya, que va ser el de la primera estació d’esquí dels Pirineus. Té una certa retirada al de «The Shining», la pel·lícula de Kubric.

—Mira: és molt fàcil —vaig dir immediatament parlant sense pauses.
»El cambrer 1, canvia totes les portes que siguin múltiples d’1. El 2, totes les múltiples de dos, les parells. El tres les que duen un nombre múltiple de 3. I així fins el cambrer 1000 que només canvia la porta 1000.
»Cada porta canvia un nombre de vegades igual al de divisors del seu número.
»Les que canviïn un nombre parell de vegades restaran tancades al final; les que el nombre de canvis —que és el de divisors— sigui senar, quedaran obertes.
»En general un enter té un nombre parell de divisors, per exemple en el cas del 12 els podem agrupar per parelles que multiplicades ens donen precisament 12: 1 × 12; 2 × 6; 3 × 4, i ja està, tres parelles, sis divisors.
»Però tots els enters són així? No, si un és quadrat perfecte, la seva arrel quadrada queda desaparellada, per exemple el 36: 1 × 36; 2 × 18; 3 × 12; 4 × 9 i ens resta el 6 que formaria parella amb ell mateix.
»I quants nombres quadrats hi ha fins a 1000? La part entera de l’arrel quadrada de 1000 que és 31.

Ho vaig trigar ni un minut en dir tot això.

—Tu ja sabies el problema, oi? —va respondre la meva filla.

—Sí, clar, i la primera vegada potser vaig trigar una mica més d’un minut a resoldre’l, fins i tot recordo que vaig escriure alguna fórmula en un paper. Aproximadament va ser:

»Raonem a partir d’un exemple, pensem, per exemple, amb la porta 12. El primer cambrer la canviarà ja que les canvia totes; el segon també ja que passa de dos en dos, o sigui que canvia les portes 2, 4, 6… i la 12 cau en la seqüència; el tercer canvia 3, 6, 9, 12… també; el quart 4, 8, 12, també, el cinquè 5, 10, 15… no; el sisè 6, 12… sí; del 7 a l’onze passa de llarg; el cambrer 12 torna a canviar la porta, precisament la primera que canvia; a partir d’aquí, ningú no torna a tocar la porta 12. La conclusió és fàcil, la porta 12 s’ha canviat quan hi han passat els cambrers 1, 2, 3, 4, 6 i 12, en tres paraules, els divisors de 12. Si el nombre de cambrers que canvien la porta és parell, al fina quedarà tancada, i si és senar, oberta.
»I quins nombres naturals tenen un nombre senar de divisors?
»La fórmula, al menys jo me la sé de memòria des que em van ensenyar a descompondre un nombre en factors primers. Si un nombre natural n té una descomposició: p^a × q^b × r^c × s^d… on p, q, r, s… són els factors primers i a, b, c, d… els respectius exponents —ho escric així perquè aquí no puc posar-hi ni superíndexs ni subíndexs—, el nombre de divisors del nombre ve donat per la fórmula (a + 1) × (b + 1) × (c + 1) × (d + 1)…
»A veure, per que aquest resultat sigui senar, ho han de ser tots els termes que multipliquen, i com que tots són de la dorma x + 1, resultara que a, b, c, d… que són els exponents que apareixen a la descomposició de n, són tots parells, i es poden dividir exactament per dos. Aleshores el nombre: p^(a/2) × q^(b/2) × r^(c/2) × s^(d/2)… serà un enter i també l’arrel quadrada de n. O sigui que n és un quadrat. Només els enters quadrats tenen un nombre de divisors quadrats.
»La conclusió és que totes les portes quedaran tancades llevat de les que portin un nombre que sigui quadrat perfecte. I quantes n’hi ha? Si el quadrat de 1000 és 31 i escaig, ja que el quadrat de 32 és 1024 i es passa, restaran exactament 31 portes obertes. La resta, que corresponen a enters no quadrats amb un nombre de divisors parells, quedaran tancades.
»Clar que una vegada fet aquest raonament, que és més ràpid fer-lo de cap que escriure’l o llegir-lo, vaig buscar una simplificació que és la que t’he explicat al començament, sense necessitat de recordar la fórmula del nombre de divisors.

No sé com li va anar quan va tornar a classe d’aquella assignatura, l’únic que recordo és que, a final del curs, va treure matrícula d’honor. Com el seu germà en càlcul d’una carrera de ciències. No crec que sigui genètic, hi ha coses que s’encomanen d’altres maneres.

Aquesta entrada ha esta publicada en Ciència i pensament, Divulgació, Educació, Matemàtica, Problemes. Afegeix a les adreces d'interès l'enllaç permanent.

Deixa un comentari

L'adreça electrònica no es publicarà. Els camps necessaris estan marcats amb *

*