Pols d'estels

El bloc d'Enric Marco

Arxiu de la categoria: ALMA

Viatge al centre d’un forat negre

0

Viatge al centre d’un forat negre

Iván Martí Vidal
Institució Alfons el Magnànim-Centre Valencià d’Estudis i d’Investigació
ISBN: 978-84-7822-886-7
Any: 2021

Acostumats a viure en aquesta part de l’Univers on tot és tranquil i lent, on n’hi ha prou amb la Llei de Gravitació de Newton, és fascinant saber que existeixen altres parts del Cosmos on tot és violència i l’espaitemps es retorça de manera inimaginable. Aquests llocs, situats en les proximitats dels forats negres, posen a prova les nostres teories físiques. Ací Newton no és suficient i hem de recórrer a la Teoria de la Relativitat d’Einstein per a explicar els estranys comportaments de la matèria i l’energia.

Aquestes estrelles mortes, abans mers objectes teòrics, van entrar triomfalment en la realitat amb el descobriment del forat negre supermassiu de la nostra galàxia i en obtindre senyals de les seues col·lisions en els detectors LIGO i VIRGO. Gestes que es van premiar amb dos premis Nobel de Física.

Però aconseguir veure l’aspecte d’un forat negre és una altra cosa. Ens interessa poder distingir tots els detalls del monstre estel·lar, veure les seues diferents capes fins a arribar a l’horitzó d’esdeveniments, el seu disc d’acreció i, sobretot, poder explicar com es formen els seus energètics dolls relativistes. Un nivell de detall tan enorme només pot aconseguir-se amb la tècnica VLBI, és a dir, amb l’ús d’una xarxa mundial de radiotelescopis d’una sensibilitat extrema i a longituds d’ona mil·limètriques. Un somni difícil d’aconseguir.

Finalment la col·laboració internacional Event Horizon Telescope (EHT) va aconseguir obtindre la imatge icònica dels voltants del forat negre supermassiu de la galàxia M87. Una imatge que va meravellar al món el 10 d’abril de 2019.

Iván Martí Vidal, un dels més destacats membres de l’EHT, en Viatge al centre d’un forat negre, ens compta de primera mà els reptes científics i tecnològics que s’han hagut de superar i els esforços humans que s’han requerit per a aconseguir aquesta imatge. Un èxit que sense la contribució essencial d’Iván no haguera sigut possible.

El llibre comença recorrent els punts més rellevants de la Relativitat d’Einstein. S’explica la paradoxa dels bessons, els invariants relativistes i les propietats curioses de l’espaitemps. Més endavant s’introdueix el Principi d’Equivalència, pel qual un camp gravitatori és equivalent a una acceleració; es parla de la no existència de la simultaneïtat en l’univers. Tot això assaonat amb explicacions i exemples originals d’Iván que, com confessa, li han portat moltes hores de reflexió.

Els següents capítols es dediquen a descriure l’anatomia dels forats negres, com les seues propietats depenen de la seua massa i rotació, com es comporta la matèria en els seus voltants i com s’altera el temps en l’horitzó d’esdeveniments. És fascinant comprovar de quina manera gira la matèria al seu voltant formant un disc d’acreció, ionitzant-se i calfant-se, mentre va caient en espiral en les gargamelles del monstre còsmic, alhora que els raigs de llum són atrapats per sempre en el conjunt d’òrbites que formen la fotonoesfera. Però, d’alguna manera, una part d’aqueixa matèria és regurgitada a l’espai en forma de dolls relativistes.

En els últims capítols del llibre, Iván ens compta, de manera apassionada, com la xarxa mundial de radiotelescopis usada, amb ALMA com a peça fonamental, va aconseguir captar alguns dels pocs fotons que van aconseguir escapar de la fotonoesfera del forat central de M87 fa més de 50 milions d’anys. Així mateix, ens descriu el tipus d’algorismes que van ser necessaris per a poder traure la informació de les precioses dades rebudes i reconstruir el seu aspecte real.

Lluny de ser aquest el final de l’aventura, a EHT se li augura un futur brillant. A més de revelar-nos pròximament l’estructura del camp magnètic al voltant del forat negre central de M87, usant polarimetría de la qual Iván és un expert, s’estan analitzant actualment les dades que ens donaran imatges del forat central de la Via Làctia. A més, EHT buscarà també nous objectius i per tant continuarà donant-nos alegries en els pròxims anys.

Què li passa a Betelgeuse?

7

Durant les nits d’hivern la constel·lació d’Orió és ben visible. Les tres estrelles alineades del cinturó ajuden a que siga una de les més conegudes del cel. La mitologia ens diu que representa un gegant caçador. I aquestes setmanes, Betelgeuse, l’estel rogenc situat al seu muscle dret, sembla que s’està apagant. És un senyal que està a punt d’explotar com a supernova?

Betelgeuse és l’estel més brillant de la constel·lació i un dels 10 més brillants del cel. Tanmateix actualment la seua brillantor ha minvat tant que a finals de desembre havia baixat a la posició 21.

Quina podria ser l’explicació d’aquest fenomen?

Betelgeuse és una supergegant roja, una immensa bola de gas d’unes 12 masses solars, un estel evolucionat que fa mil·lennis deixà la tranquil·la seqüència principal on cremava hidrogen per formar heli. Ara unflada exageradament travessarà fases successives de cremat d’hidrogen, heli, carboni, neó, oxigen i silici. Al final d’aquest procés, l’estrella acabarà amb una estructura interna similar a la d’una ceba, amb diverses capes, cadascuna d’una composició diferent. I quan les cendres siguen de ferro al centre, ja no es podrà generar més energia i s’esdevindrà el col·lapse i l’explosió de supernova.

Betelgeuse és relativament jove. Només té un 10 milions d’anys mentre que el Sol, molt més vell, es troba a la meitat de la seua vida d’uns 4500 milions d’anys. Les altíssimes pressions i temperatures de l’interior d’aquest tipus d’estels supergegants i tan massius tenen com a conseqüència que cremen molt ràpidament i tenen una vida curta. Si vius intensament la vida, la cremes molt de pressa.

Betelgeuse està a només 700 anys llum, prou prop per poder resoldre el seu disc estel·lar amb els nostres telescopis. La imatge superior, realitzada amb els radiotelescopis de  l’Atacama Large Millimeter/submillimeter Array (ALMA), ens mostra l’estel supergegant roig, una de les estrelles més grans conegudes. Les antenes d’ALMA ens presenten l’estrella com d’unes 1400 vegades més gran que el Sol. La figura mostra la mida de l’estrella comparada amb el Sistema Solar. Si situarem Betelgeuse al lloc del Sol engoliria Mercuri, Venus, Terra i Mart i fins i tot el gegant del gas Júpiter. Només Saturn en restaria fora encara que sofriria la calor de l’estrella i, a poc a poc, s’aniria evaporant. I, donada la seua massa i edat, es considera que l’estel explotarà com a supernova en els pròxims 100 000 anys. Però, realment podria ser d’ací 1000 anys, o demà mateix. Ningú ho sap del cert.

Representació artística que mostra Betelgeuse amb una bombolla gegantina que bull a la superfície i una forta emissió de gas que va ser expulsada a sis radis fotosfèrics o aproximadament a una distància equivalent a l’òrbita de Neptú. ESO//L. Calçada.

I ara, des d’octubre la lluminositat de  l’estel està baixant ràpidament. A finals de desembre del 2019 la brillantor de Betelgeuse s’havia atenuat un factor 2,5, d’una magnitud aparent 0.5 a l’actual de 1.5. És a dir, l’estel és, ara mateix, un 2,5 més fosca que a l’estiu passat.

Betelgeuse està tan prop i és tan gran que és l’única estrella, sense comptar el Sol, de la qual podeu veure amb instrumentació sofisticada la seu superfície. I s’ha detectat una gran variació en l’aparició de zones fosques i brillants, que la converteix en una estrella variable. A més perd material i forma núvols de gas al seu voltant, que poden ser la causa de la baixada de brillantor observada actualment.  Les baixades i pujades de brillantor s’han observat regularment al llarg del temps des del segle XIX però mai s’havia vist una baixada tan profunda i continuada.

Així que la disminució de brillantor observada ara ha estat associada per alguna premsa a l’explosió imminent de Betelgeuse. De fet, no sabem exactament que passa a l’exterior d’una estrella pocs dies abans del seu col·lapse i explosió. Quins signes externs presenta una estrella abans de morir com a supernova? No se sap massa bé.

Tanmateix els astrofísics especialistes en el tema descarten que per ara Betelgeuse vaja a explotar. Només semblen efectes de les capes externes i dels núvols de material que l’envolten.

Simulació realitzada amb el programa Celestia de la constel·lació d’Orió tal com es podria veure des la Terra quan Betelgeuse esclate com a supernova. Hi ha, però, un detall a considerar. L’estel brillarà com la Lluna plena però continuarà essent un objecte puntual.

Ara bé, si tenim la sort que en la nostra vida l’estel es decidira a fer-nos un espectacle celeste serà un fenomen que no ens passarà per alt. Betelgeuse serà aleshores la supernova més brillant no mai observada, tan brillant com la Luna plena. A més, durant uns mesos seria visible tan de dia com de nit, i podríem caminar sota la llum de Betelgeuse. Passat aquest temps començaria a baixar la seua brillantor fins que cap als tres anys retornaria a la seua lluminositat habitual. Aquesta baixada de llum no s’aturaria ja que cap als sis anys Betelgeuse seria tan dèbil que deixaria de ser visible a ull nu. La constel·lació d’Orió perdria el seu muscle dret i el seu aspecte canviaria per sempre.

Mes informació:
Betelgeuse: Star’s weird dimming sparks rumors that its death is imminent
Betelgeuse: What’s up?
El enigma de Betelgeuse

Imatges:

1.- Betelgeuse és l’estrella brillant roja que se troba situada en la part superior dret de l’imatge. Hubble European Space Agency (HST/ESA).
2.- Sense atribució. Wikipedia Commons.
3.- Imatge via ESO.
4.- ESO/L. Calçada. A plume on Betelgeuse (artist’s impression with annotations)
5.- Infografia d’Heloïse Stavance.@Sydonai
6. HeNRyKus Celestia. Wikipedia Commons.

Publicat dins de La Galàxia i etiquetada amb , , , | Deixa un comentari

El forat negre de la galàxia M87

0
Publicat el 12 d'abril de 2019

Finalment ja tenim la imatge. Els científics de la col·laboració internacional Event Horizon Telescope (EHT) presentaren dimecres la que és la primera imatge d’un forat negre, concretament del que es troba situat al centre de la galàxia activa M87. La imatge mostra un anell brillant format a partir de les rajos de llum que surten del disc de matèria que envolta una zona fosca on s’hi troba el forat negre i que es dobleguen a causa de la intensa gravetat.

El dimecres 10 d’abril fou un dia de gran celebració en les diverses rodes de premsa celebrades simultàniament arreu del món per mostrar la gran fita científica d’aconseguir veure com és realment un d’aquests monstres estel·lars. Des de Washington, a la seu de la National Science Fundation, o des de Bruxel·les, des de la seu de la Comissió Europea i des de Madrid, a la seu del CSIC, entre altres indrets, els astrònoms que han col·laborat en el macro-projecte explicaven dimecres el seu treball.

D’aquest grup selecte d’investigadors dos són valencians: Iván Martí-Vidal, de l’Institut Geogràfic Nacional (IGN), que ha dissenyat els algorismes que van permetre combinar les dades de les antenes d’ALMA (l’element més sensible de l’EHT) amb la resta de radiotelescopis; és a més coordinador del grup de polarimetria (el principal objectiu del qual és estudiar el paper dels camps magnètics en les proximitats del forat negre) i Rebecca Azulay, investigadora postdoctoral que treballa actualment en el Departament d’Astronomia i Astrofísica i en l’Observatori Astronòmic de la Universitat de València.

Fotografia del Telescopi Espacial Hubble que mostra el doll de matèria expulsat d’M87 quasi a la velocitat de la llum, i que s’allunya fins a uns 5000 anys llum del nucli galàctic

Des de fa molts anys se sap que M87, situat a uns 53,5 milions de quilòmetres, és una galàxia activa. L’observació detallada de l’objecte mostra una gran variabilitat en ràdio, raigs X i raigs gamma i sobre tot presenta un doll de partícules accelerades d’almenys 5.000 anys llum de longitud que surt del seu centre i que apunta quasi directament cap a la Terra, amb una desviació molt menuda d’uns 17º.  Els models astrofísics actuals expliquen aquesta variabilitat per l’existència d’un forat negre supermassiu de milions de masses solars.  Donat que veiem pràcticament el centre de la galàxia de cara hauria de ser possible observar fàcilment que és el que està passant allí dins.

Però l’aspecte que té el forat negre central d’M87 no és fàcil de saber. La galàxia està molt lluny i l’objecte es tan “menut” com tot el nostre Sistema Solar. Necessitem, per tant, una resolució extraordinària per veure’n detalls. I la resolució d’un instrument depén de la longitud d’ona, en aquest cas ones de ràdio d’1,3 mm i és inversament proporcional a l’apertura, la grandària del radiotelescopi.  Quan més gran és el disc d’un radiotelescopi, més detalls podrem esbrinar. Tanmateix en aquest cas l’objecte és tan menut que un únic radiotelescopi no ens permet obtindre’n detalls. I, és per això que, per aconseguir la resolució necessària va caldre combinar els senyals obtinguts simultàniament de diversos radiotelescopis d’arreu del món per a fer-ne un virtual de la grandària de la Terra a través d’una tècnica anomenada interferometria de llarga base. D’aquesta manera s’aconseguí obtindre una resolució de 20 μas (20 milionèsimes de segon d’arc d’angle). Per fer-vos una idea clara del que significa seria com poder veure una pilota de tenis en la superfície de la Lluna.


Xarrada TED de Katie Bouman, una de de les desenvolupadores del software de l’EHT, on explica el procés que s’ha seguit per aconseguir la primera imatge d’un forat negre.

Durant uns dies d’abril de 2017, l’Event Horizon Telescope, la xarxa de huit radiotelescopis distribuïts al llarg del món que inclouen les antenes ALMA de Xile, l’antena IRAM del Pico Veleta, antenes a Hawaii, al Pol Sud, etc, observaren simultàniament dos objectes: Sagittarius A*, el forat negre supermassiu (4 milions de masses solars) situat al centre de la Via Làctia i la bèstia còsmica encara més massiva del centre d’M87, una galàxia activa situada a 53,5 milions d’anys llum. L’observació simultània va permetre reconstruir un telescopi de la grandària de la Terra. En aquesta observació i durant els següents  dos anys, 208 científics (enginyers, astrònoms, matemàtics, informàtics…) dels quals 23 són dones (un 11%) han recopilat les dades, les han coordinats, han fet algorismes per combinar les dades de cada telescopi, etc, per obtindre el que mai s’havia aconseguit abans: veure-li la cara a un forat negre. Fins ara en teníem proves indirectes de la seua existència però mai no havíem aconseguit veure’ls. I la imatge final s’assembla extraordinàriament al que preveien els models teòrics construïts a partir de la Relativitat General. Einstein tenia raó i les seus teories tornen a passar el test de l’experimentació.

L’entorn de la bèstia còsmica del centre d’M87, una galàxia activa situada a  53,5 milions d’anys llum, se’ns presenta com un anell brillant d’un 42 μas (42 milionèsimes de segon d’arc d’angle) format a partir de les rajos de llum que surten del disc de matèria que envolta una zona fosca on s’hi troba el forat negre i que es dobleguen a causa de la intensa gravetat. Un anell que gira en sentit horari quasi de cara a nosaltres amb una certa inclinació amb el resultat que la part inferior més enllumenada indica que és llum que ve cap a nosaltres mentre que la part superior més fosca s’allunya. Això és compatible amb la direcció del doll de material ejectat amb una inclinació de 17º respecte a l’observador (veieu imatge anterior del doll). Tanmateix l’inici del doll que es veu a gran distància no és visible en la imatge a conseqüència d’una resolució insuficient.

Al centre de l’anell s’observa una zona negra, que s’ha anomenat ombra del forat negre, que inclou l‘horitzó d’esdeveniments del forat negre central d’M87, la zona fronterera que l’envolta, a l’interior de la qual la gravetat és tan intensa que ni tan sols la llum té suficient velocitat per escapar-se’n. L’ombra és unes 2,5 vegades més gran que l’horitzó i, de moment, és el màxim que podem resoldre fins que no milloren les nostres tècniques.

El forat negre d’M87 és tan gran que el nostre sistema solar cabria perfectament dins del seu horitzó d’esdeveniments. Com que, a més a més, les observacions d’M87 han permés corregir a l’alça la massa del monstre còsmic que es troba molt endins de l’ombra i que ara s’estima que és uns 6500 milions de vegades més massiu que el Sol, podem imaginar-nos la compressió del material que permet encabir tants sols en un espai tan reduït.

Aquesta imatge tan buscada, aconseguida per la col·laboració internacional EHT, proporciona les proves més fortes fins a la data de l’existència de forats negres supermassius i obre una nova finestra a l’estudi dels forats negres, els seus horitzons d’esdeveniments i la seua gravetat.

La col·laboració internacional ha aconseguit una fita espectacular, que un company explicava gràficament ahir: Mira a un estel qualsevol del cel, en les millors condicions que pugues, i pensa que en el diàmetre aparent d’aquest puntet podries encabir una rere l’altra 10.000 còpies de la imatge del forat negre d’M87. Això han aconseguit.

I alguns dels que ho han aconseguit són amics i companys. Enhorabona.

I que ha passat amb el forat negre de la nostra galàxia? Com és que no ens han donat la imatge de l’objecte Sagitari A*?

Malgrat estar més prop resulta que és també molt variable i, a més a més, cal veure’l a través de la pols i gas del disc galàctic on es troba el Sistema Solar, amb la qual cosa resulta molt més problemàtic aconseguir una imatge neta semblant a la d’M87. Els científics ja estan treballant en algorismes que permeten reconstruir l’evolució temporal de la imatge, que podríem tenir en menys de cinc anys.

En el vídeo farem un viatge des de les antenes d’ALMA, mirant la nit estrellada, acostant-nos a la galàxia M87, observant les diverses imatges de la galàxia, del doll fins arribar a les proximitats del forat negre.

Finalment caldria destacar la repercussió mundial que ha tingut la conferència de premsa múltiple arreu del món. No només tots els diaris posaren la imatge de l’ombra del forat negre central d’M87 a la portada sinó que Google canvia el logo per remarcar la fita científica.

Per saber-ne més
Guía sencilla para entender la foto del agujero negro, Agencia SINC
Una astrònoma de la Universitat participa en la captura de la primera imatge d’un forat negre, UV.
First Images of a Black Hole from the Event Horizon Telescope. AAS Nova
La primera imagen de la sombra y el anillo asimétrico del agujero negro M87* gracias a EHT. La ciencia de la Mula Francis. Una explicació més física.

Entrevista a Iván Martí-Vidal en TVE 24 h. 11/4/2019

Imatges:

1. Imatge de l’ombra del forat negre d’M87. Col·laboració EHT.
2. El doll que emergeix del nucli galàctic d’M87 (NGC 4486). NASA and The Hubble Heritage Team (STScI/AURA)HubbleSite.
3.- Ubicació dels radiotelescopis de la col·laboració EHT.
4.- Alguns amics participants en EHT. Crèdit: Vicent Martínez.

Publicat dins de Altes energies i etiquetada amb , , , , | Deixa un comentari

Tot esperant desvelar l’aspecte d’un forat negre

0
Publicat el 9 d'abril de 2019

En unes hores sabrem finalment quin aspecte té l’entorn d’un forat negre. En la roda de premsa simultània que es realizarà a diversos paísos del mon a partir de les 15 h de dimecres 10 d’abril, es presentaran les primeres imatges en ràdio del forat central de la Via Làctia i el de la galàxia activa M87 aconseguides amb l’Event Horizon Telescope.

L’Event Horizon Telescope, no és ben bé un únic telescopi, sinó una xarxa de huit radiotelescopis distribuïts al llarg del món que inclouen les antenes ALMA de Xile, l’antena IRAM del Pico Veleta, antenes a Hawaii, al Pol Sud, etc, que fa dos anys es coordinaren per observar simultàniament dos objectes: Sagittarius A*, el forat negre supermassiu (4 milions de masses solars) situat al centre de la Via Làctia i la bèstia còsmica encara més massiva del centre d’M87, una galàxia activa situada a  53,5 milions d’anys llum. L’observació simultània va permetre reconstruir un telescopi de la grandària de la Terra

Aquesta infografia detalla les ubicacions dels telescopis participants de l’Event Horizon Telescope (EHT) i del Global mm-VLBI Array (GMVA). El seu objectiu és representar, per primera vegada, l’ombra de l’horitzó de l’esdeveniment del forat negre supermassiu al centre de la Via Làctia, així com estudiar les propietats de l’acreció i les emissions al voltant del centre galàctic.

Durant el mes d’abril del 2017, nombrosos investigadors utilitzaren aquesta xarxa de telescopis per captar els senyals ràdio que provenen de l‘horitzó d’esdeveniments dels forats negres centrals d’aquestes galàxies, la zona fronterera que els envolta, a l’interior de la qual la gravetat és tan intensa que ni tan sols la llum té suficient velocitat per escapar-se’n.  L’anàlisi de les dades ha estat complex i després de dos anys en unes hores es presentarà al públic.

Que fins ara no hagem tingut una imatge de com son els forats negres no significa que no tinguerem una idea de com haurien de ser. Les lleis de la Física i en especial les de la Relativitat General de la Relativitat, proposada per Albert Einstein el 1915, ja preveuen com hauria de semblar l’horitzó d’esdeveniments i tot l’entorn del forat negre.

Imatge artística que mostra un forat negre supermassiu que gira ràpidament envoltat d’un disc d’acreció. Aquest disc prim de material consisteix en les restes d’una estrella semblant al Sol, que va ser trencada per les forces de marea del forat negre. Crèdit: ESO, ESA / Hubble, M. Kornmesser / N. Bartmann

Un forat negre és el resultat del col·lapse i concentració d’una quantitat ingent de material estel·lar que arriba a distorsionar l’espai-temps i produeix una singularitat, un punt en que la densitat és infinita. La gravetat és tan intensa que fins i tot la llum no és capaç d’escapar-se més enllà d’un radi o horitzó d’esdeveniments per la qual cosa els forats es veuen negres des de l’exterior. Aquesta frontera fa impossible treure informació de l’interior llevat de l’anomenada Radiació de Hawking.

Al seu voltant trobarem un disc de material calent que va caient en espiral cap al forat negre i en els forats molt energètic trobarem també uns dolls relativistes de gas calent expulsats perpendicularment al disc per l’intens camp magnètic. La llum que envolta el forat negre es pertorbat per l’intens camp gravitatori del forat negre i és distorsionada de manera que fins i tot la part del disc d’acreció de darrere del objecte, la més allunyada de l’observador és visible per la part superior

https://youtu.be/APriQsm_M5o

El vídeo de Hotaka Shiokawa mostra l’aparença que tindria el disc d’acreció d’un forat negre en una simulació de magnetohidrodinàmica general relativista (GRMHD) observat en ràdio. Els raigs de llum emesos des de la part interior del disc es produeixen abans de l’arribada al “telescopi” a causa de l’efecte gravitacional de la lent i produeixen les imatges distorsionades. El disc es veu des de 45º per sobre del pla equatorial del disc. El costat esquerre de la imatge és més brillant que el costat dret a causa de l’efecte radiant Doppler: la llum emesa per un objecte que es dirigeix cap a un observador és més brillant que la que s’allunya de l’observador. La part negra central és l'”ombra” del forat negre, que és el que l’Event Horizon Telescope intenta veure.

Segons la forma que presente la imatge de detall dels forats negres que s’ha obtingut amb les dades del Event Horizon Telescope (mireu imatge adjunta) es podran confirmar o rebutjar les diverses teories alternatives a la de la Gravitació d’Einstein o bé, com sempre ha passat fins ara, es reforçarà encara més la Relativitat General.

Simulació dels dolls (roig brillant) d’un forat negre i del disc d’acreció al seu voltant, amb imatges simulades de les tres formes potencials de l’ombra de l’horitzó de l’esdeveniment. Crèdit: ESO / N. Bartmann / A. Broderick / C.K. Chan / D. Psaltis / F. Ozel

També podrem conéixer molts altres aspectes encara pot clars d’aquests monstres còsmics, com ara la possible existència de púlsars en òrbita al voltant dels forats negres o la forma en que aquests emeten els dolls. Caldrà esperar unes hores.

La ciència del 2012 segons Nature

1
Publicat el 5 de gener de 2012

Ciencia 2012

Comença l’any 2012 i les revistes científiques ens presenten els possibles descobriments per a l’any que comença. Com ja faig fer l’any passat us pose els avanços previstos relacionats amb l’astronomia i l’exploració espacial que presenta la revista Nature en els seu article New year, new science. Evidentment alguns descobriments que ens sorprendran no estan aquí detallats. La ciència i els que s’hi dediquen, si no els deixen sense diners, sempre ens podran sorprendre.

La font del metà marcià

El rover de la NASA de la mida d’un cotxe Curiosity es calcula que arribe al planeta Mart el mes d’agost. La nau nord-americana de 2,5 mil milions de dòlars aterrarà usant un innovador sistema d’aterratge – la “grua celeste” en el cràter Gale, on estudiarà els estrats de roca en un intent per descobrir el passat aquós del planeta vermell. També inhalarà metà, d’origen desconegut a l’atmosfera de Mart, i podria revelar si el gas està essent produït pels processos geològics o per vida microbiana marciana. Més lluny, la missió Kepler de la NASA segurament ha de trobar un veritable bessó extrasolar de la Terra, amb la mida justa i amb una òrbita al voltant d’una estrella similar al Sol i amb tots els requisits com per a ser habitable.

El misteri de Majorana

El Gran Col·lisionador d’Hadrons, el gegantí accelerador de partícules del CERN, prop de Ginebra, a Suïssa, reunirà suficients dades d’aquest any per confirmar o descartar l’existència de la forma més simple del bosó de Higgs, una peça clau del mecanisme pel qual es creu que es confereix massa a una altre partícula. Una aposta més arriscada seria per als físics trobar un exemple d’un fermió de Majorana, hipoteticament una entitat sense massa i sense càrrega capaç d’actuar com la seua pròpia antipartícula, que podria ser útil per a la formació de bits estables per a la computació quàntica. Els experiments han suggerit que en els materials coneguts com aïllants topològics, els moviments col·lectius d’electrons creen una quasipartícula que es comporta com un Majorana.

A la recerca del llac perdut

En poques setmanes, els investigadors russos esperen acabar la perforació a través de la capa de gel de l’Antàrtida per arribar al llac Vostok, un enorme llac d’aigua dolça localitzada aproximadament a 3750 metres sota la superfície. És una carrera contra el temps: 10-50 metres de gel separen l’equip del seu objectiu, al qual s’ha d’arribar abans que l’últim avió de la temporada surta al febrer. Hi haurà més investigacions de perforació a l’abril, quan el vaixell japonés Chikyu salpe per penetrar en la falla submarina que va causar el terratrèmol de magnitud 9,0 l’any passat.

La major xarxa de telescopis

Sud-àfrica i Austràlia, decidiran al mes de març quin dels dos albergarà l’Sky Kilometer Array (SKA) de 2,1 mil milions de dòlars, que serà el més gran radiotelescopi del món si finalment es construeix. La decisió serà presa per l’oficina del programa de desenvolupament de l’SKA  a Manchester, Regne Unit. Mentrestant, el Atacama Large Array Millimeter/Submillimeter en el desert d’Atacama a Xile hauria de ser completat fins a un 60% a finals d’any.

Avenços en el vols espacials

Al febrer, SpaceX de Hawthorne, a Califòrnia, espera ser la primera empresa comercial a dur una nau de càrrega no tripulada a l’Estació Espacial Internacional una fita en els vols espacials privats. Pel que fa als esforços espacials governamentals, la Xina, plena de confiança després de l’acoblament l’any passat de la nau espacial no tripulada Shenzhou-8 amb el mòdul experimental Tiangong-1, espera enviar astronautes per a una maniobra d’atracada tripulada aquest any.

Imatge: Recreació del Curiosity explorant la superfície marciana. De Wikipedia Commons.

 

Publicat dins de Sistema solar i etiquetada amb , , | Deixa un comentari